高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种无人机航拍影像快速特征提取与匹配算法

余淮 杨文

余淮, 杨文. 一种无人机航拍影像快速特征提取与匹配算法[J]. 电子与信息学报, 2016, 38(3): 509-516. doi: 10.11999/JEIT150676
引用本文: 余淮, 杨文. 一种无人机航拍影像快速特征提取与匹配算法[J]. 电子与信息学报, 2016, 38(3): 509-516. doi: 10.11999/JEIT150676
YU Huai, YANG Wen. A Fast Feature Extraction and Matching Algorithm for Unmanned Aerial Vehicle Images[J]. Journal of Electronics & Information Technology, 2016, 38(3): 509-516. doi: 10.11999/JEIT150676
Citation: YU Huai, YANG Wen. A Fast Feature Extraction and Matching Algorithm for Unmanned Aerial Vehicle Images[J]. Journal of Electronics & Information Technology, 2016, 38(3): 509-516. doi: 10.11999/JEIT150676

一种无人机航拍影像快速特征提取与匹配算法

doi: 10.11999/JEIT150676
基金项目: 

国家自然科学基金(61271401, 91338113)

A Fast Feature Extraction and Matching Algorithm for Unmanned Aerial Vehicle Images

Funds: 

The National Natural Science Foundation of China (61271401, 91338113)

  • 摘要: 无人机影像具有非常高的分辨率,边缘和纹理信息更加丰富,基于经典SURF特征的影像拼接算法在处理无人机影像时面临着新的挑战。为提高无人机航拍影像拼接效率,该文提出一种快速特征提取与匹配算法。在特征提取环节,提出采用局部差分二进制算法描述特征,在不降低特征区分性的同时,较SURF描述子而言降低了特征维度。在特征匹配环节,提出采用局部敏感哈希搜索算法代替kd树搜索算法,提高了最近邻特征匹配效率。实验结果表明,与基于SURF描述子和kd树搜索算法的最近邻匹配拼接算法相比,该文算法特征匹配效率有明显提升,匹配精度也有所改善,更适合应用于基于特征的无人机航拍影像快速制图。
  • 李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报: 信息科学版, 2014, 39(5): 505-513.LI Deren and LI Ming. Research advance and application prospect of unmanned aerial vehicle remote sensing system [J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 505-513. [2] 郭复胜, 高伟. 基于辅助信息的无人机图像批处理三维重建方法[J]. 自动化学报, 2013, 39(6): 834-845.GUO Fusheng and GAO Wei. Batch reconstruction from UAV images with prior information[J]. Acta Automatica Sinica, 2013, 39(6): 834-845.[3] SZELISKI R. Video mosaics for virtual environments [J]. IEEE Computer Graphics and Applications, 1996, 16(2): 22-30.[4] 张宝龙, 李洪蕊, 李丹, 等. 一种针对车载全景系统的图像拼接算法的仿真[J]. 电子与信息学报, 2015, 37(5): 1149-1153. doi: 10.11999/JEIT141185.ZHANG Baolong, LI Hongrui, LI Dan, et al. A simulation of image mosaic algorithm based on vehicle panorama system [J]. Journal of Electronics & Information Technology, 2015, 37(5): 1149-1153. doi: 10.11999/JEIT141185.[5] LOWE D G. Object recognition from local scale-invariant features[C]. IEEE International Conference on Computer Vision, Kerkyra, Corfu, Greece, 1999, 2: 1150-1157.[6] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.[7] BROWN M and LOWE D G. Automatic panoramic image stitching using invariant features[J]. International Journal of Computer Vision, 2007, 74(1): 59-73.[8] BAY H, TUYTELAARS T, and VAN Gool L. Surf: Speeded Up Robust Features[C]. European Conference on Computer Vision, Graz, Austria, 2006: 404-417.[9] 颜雪军, 赵春霞, 袁夏. 一种鲁棒的基于图像对比度的局部特征描述方法[J]. 电子与信息学报, 2014, 36(4): 882-887. doi: 10.3724/SP.J.1146.2013.00846. YAN Xuejun, ZHAO Chunxia, and YUAN Xia. A robust local feature descriptor based on image contrast[J]. Journal of Electronics & Information Technology, 2014, 36(4): 882-887. doi: 10.3724/SP.J.1146.2013.00846.[10] SILPA-ANAN C and HARTLEY R. Optimized KD-trees for fast image descriptor matching[C]. IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008: 1-8.[11] MUJA M and LOWE D G. Fast approximate nearest neighbors with automatic algorithm configuration[C]. The International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Lisboa, Portugal, 2009: 331-340.[12] CALONDER M, LEPETIT V, STRECHA C, et al. Brief: binary robust independent elementary features[C]. European Conference on Computer Vision, Hersonissos, Heraklion, Crete, Greece, 2010: 778-792.[13] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 2564-2571.[14] LEUTENEGGER S, CHLI M, and SIEGWART R Y. BRISK: binary robust invariant scalable keypoints[C]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 2548-2555.[15] ALAHI A, ORTIZ R, and VANDERGHEYNST P. Freak: fast retina keypoint[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, Rhode Island, USA, 2012: 510-517.[16] YANG X and CHENG K T. Local difference binary for ultrafast and distinctive feature description[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1): 188-194.[17] ANDONI A and INDYK P. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions[J]. Communications of the ACM, 2008, 51(1): 117-122.[18] FISCHLER M A and BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.[19] VIOLA P and JONES M. Robust real-time object detection [J]. International Journal of Computer Vision, 2004, 57(2): 137-154.[20] 沈秋, 李小凡, 孔繁锵, 等. 基于仿射模型的无人机视频实时压缩算法[J]. 电子与信息学报, 2014, 36(12): 2855-2860. doi: 10.3724/SP.J.1146.2014.00080.SHEN Qiu, LI Xiaofan, KONG Fanqiang, et al. A real-time video compression for UAV based on affine model[J]. Journal of Electronics & Information Technology, 2014, 36(12): 2855-2860. doi: 10.3724/SP.J.1146.2014.00080.[21] 李明, 刘欢, 朱欣焰. 一种面向灾害应急的 UAV 影像快速拼接方法[J]. 灾害学, 2012, 27(3): 139-144.LI Ming, LIU Huan, and ZHU Xinyan. Approach to fast mosaic UAV images for disaster emergency[J]. Journal of Catastrophology, 2012, 27(3): 139-144.[22] 易磊, 褚中理, 郑克斌, 等. 面向无人机红外影像拼接的特征提取算法对比研究[J]. 测绘科学技术学报, 2014, 31(6): 608-613.YI Lei, CHU Zhongli, ZHENG Kebin, et al. Feature extraction algorithm for UAV infrared image mosaic[J]. Journal of Geomatics Science and Technology, 2014, 31(6): 608-613.[23] 胡同喜, 牛雪峰, 谭洋, 等. 基于 SURF 算法的无人机遥感影像拼接技术[J]. 测绘通报, 2015, 74(1): 55-58.HU Tongxi, NIU Xuefeng, TAN Yang, et al. Unmanned aerial vehicle images mosaic based on SURF algorithm[J]. Bulletin of Surveying and Mapping, 2015, 74(1): 55-58.
  • 加载中
计量
  • 文章访问数:  2793
  • HTML全文浏览量:  249
  • PDF下载量:  1683
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-04
  • 修回日期:  2016-01-05
  • 刊出日期:  2016-03-19

目录

    /

    返回文章
    返回