高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于图的流形排序的显著性目标检测改进方法

吕建勇 唐振民

吕建勇, 唐振民. 一种基于图的流形排序的显著性目标检测改进方法[J]. 电子与信息学报, 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619
引用本文: 吕建勇, 唐振民. 一种基于图的流形排序的显著性目标检测改进方法[J]. 电子与信息学报, 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619
Lü Jian-yong, Tang Zhen-min. An Improved Graph-based Manifold Ranking for Salient Object Detection[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619
Citation: Lü Jian-yong, Tang Zhen-min. An Improved Graph-based Manifold Ranking for Salient Object Detection[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619

一种基于图的流形排序的显著性目标检测改进方法

doi: 10.11999/JEIT150619
基金项目: 

国家自然科学基金(61473154)

An Improved Graph-based Manifold Ranking for Salient Object Detection

Funds: 

The National Natural Science Foundation of China (61473154)

  • 摘要: 该文针对现有的基于图的流形排序的显著性目标检测方法中仅使用k-正则图刻画各个节点的空间连接性的不足以及先验背景假设过于理想化的缺陷,提出一种改进的方法,旨在保持高查全率的同时,提高准确率。在构造图模型时,先采用仿射传播聚类将各超像素(节点)自适应地划分为不同的颜色类,在传统的k-正则图的基础上,将属于同一颜色类且空间上位于同一连通区域的各个节点也连接在一起;而在选取背景种子点时,根据边界连接性赋予位于图像边界的超像素不同的背景权重,采用图割方法筛选出真正的背景种子点;最后,采用经典的流形排序算法计算显著性。在常用的MSRA-1000和复杂的SOD数据库上同7种流行算法的4种量化评价指标的实验对比证明了所提改进算法的有效性和优越性。
  • Li W T, Chang H S, Lien K C, et al.. Exploring visual and motion saliency for automatic video object extraction[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2600-2610.
    Chen D Y and Luo Y S. Preserving motion-tolerant contextual visual saliency for video resizing[J]. IEEE Transactions on Multimedia, 2013, 15(7): 1616-1627.
    姜维, 卢朝阳, 李静, 等. 基于视觉显著性和提升框架的场景文字背景抑制方法[J]. 电子与信息学报, 2014, 36(3): 617-623.
    Jiang Wei, Lu Chao-yang, Li Jing, et al.. Visual saliency and boosting based background suppression for scene text[J]. Journal of Electronics Information Technology, 2014, 36(3): 617-623.
    Borji A and Itti L. State-of-the-art in visual attention modeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 185-207.
    Itti L, Koch C, and Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
    钱生, 陈宗海, 林名强, 等. 基于条件随机场和图像分割的显著性检测[J]. 自动化学报, 2015, 41(4): 711-724.
    Qian Sheng, Chen Zong-hai, Lin Ming-qiang, et al.. Saliency detection based on conditional random field and image segmentation[J]. Acta Automatica Sinica, 2015, 41(4): 711-724.
    Borji A, Sihite D N, and Itti L. Quantitative analysis of human-model agreement in visual saliency modeling: a comparative study[J]. IEEE Transactions on Image Processing, 2013, 22(1): 55-69.
    Borji A, Sihite D N, and Itti L. Salient object detection: a benchmark[C]. Proceedings of the European Conference on Computer Vision, Florence, 2012: 414-429.
    Achanta R, Estrada F, Wils P, et al.. Salient region detection and segmentation[C]. Proceedings of the International Conference on Computer Vision Systems, Heraklion, 2008: 66-75.
    Achanta R, Hemami S, Estrada F, et al.. Frequency-tuned salient region detection[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Miami, 2009: 1597-1604.
    Cheng M M, Zhang G X, Mitra N J, et al.. Global contrast based salient region detection[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Providence, 2011: 409-416.
    Goferman S, Zelnik-Manor L, and Tal A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915-1926.
    Jiang H, Wang J, Yuan Z, et al.. Automatic salient object segmentation based on context and shape prior[C]. Proceedings of the British Machine Vision Conference, Dundee, 2011: 110.1-110.12.
    Cheng M M, Jonathan W, Lin W Y, et al.. Efficient salient region detection with soft image abstraction[C]. Proceedings of the IEEE International Conference on Computer Vision, Sydney, 2013: 1529-1536.
    Xie Y L, Lu H C, and Yang M H. Bayesian saliency via low and mid level cues[J]. IEEE Transactions on Image Processing, 2013, 22(5): 1689-1698.
    Wei Y C, Wen F, Zhu W J, et al.. Geodesic saliency using background priors[C]. Proceedings of the European Conference on Computer Vision, Florence, 2012: 29-42.
    Zhu W J, Liang S, Wei Y C, et al.. Saliency optimization from robust background detection[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 2814-2821.
    蒋寓文, 谭乐怡, 王守觉. 选择性背景优先的显著性检测模型[J]. 电子与信息学报, 2015, 37(1): 130-136.
    Jiang Yu-wen, Tan Le-yi, and Wang Shou-jue. Saliency detected model based on selective edges prior[J]. Journal of Electronics Information Technology, 2015, 37(1): 130-136.
    徐威, 唐振民. 利用层次先验估计的显著性目标检测[J]. 自动化学报, 2015, 41(4): 799-812.
    Xu Wei and Tang Zhen-min. Exploiting hierarchical prior estimation for salient object detection[J]. Acta Automatica Sinica, 2015, 41(4): 799-812.
    Jiang B W, Zhang L H, Lu H C, et al.. Saliency detection via absorbing markov chain[C]. Proceedings of the IEEE International Conference on Computer Vision, Sydney, 2013: 1665-1672.
    Yang C, Zhang L H, Lu H C, et al.. Saliency detection via graph-based manifold ranking[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Portland, 2013: 3166-3173.
    Cheng X, Du P, Guo J, et al.. Ranking on data manifold with sink points[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(1): 177-191.
    Achanta R, Shaji A, Smith K, et al.. SLIC superpixles compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
    Frey B J and Dueck D. Clustering by passing message between data points[J]. Science, 2007, 315(5814): 972-976.
    Boykov Y and Jolly M P. Interactive graph cuts for optimal boundary region segmentation of objects in N-D images[C]. Proceedings of the IEEE International Conference on Computer Vision, Vancouver, 2001: 105-112.
  • 加载中
计量
  • 文章访问数:  1700
  • HTML全文浏览量:  159
  • PDF下载量:  1268
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-25
  • 修回日期:  2015-08-13
  • 刊出日期:  2015-11-19

目录

    /

    返回文章
    返回