高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于低秩张量补全的多声道音频信号恢复方法

杨立东 王晶 谢湘 赵毅 匡镜明

杨立东, 王晶, 谢湘, 赵毅, 匡镜明. 基于低秩张量补全的多声道音频信号恢复方法[J]. 电子与信息学报, 2016, 38(2): 394-399. doi: 10.11999/JEIT150589
引用本文: 杨立东, 王晶, 谢湘, 赵毅, 匡镜明. 基于低秩张量补全的多声道音频信号恢复方法[J]. 电子与信息学报, 2016, 38(2): 394-399. doi: 10.11999/JEIT150589
YANG Lidong, WANG Jing, XIE Xiang, ZHAO Yi, KUANG Jingming. Low Rank Tensor Completion for Recovering Missing Data in Multi-channel Audio Signal[J]. Journal of Electronics & Information Technology, 2016, 38(2): 394-399. doi: 10.11999/JEIT150589
Citation: YANG Lidong, WANG Jing, XIE Xiang, ZHAO Yi, KUANG Jingming. Low Rank Tensor Completion for Recovering Missing Data in Multi-channel Audio Signal[J]. Journal of Electronics & Information Technology, 2016, 38(2): 394-399. doi: 10.11999/JEIT150589

基于低秩张量补全的多声道音频信号恢复方法

doi: 10.11999/JEIT150589
基金项目: 

国家自然科学基金(61473041),内蒙古高校科研项目(NJZY13139)

Low Rank Tensor Completion for Recovering Missing Data in Multi-channel Audio Signal

Funds: 

The National Natural Science Foundation of China (61473041), Scientific Research Project in Colleges and Universities of Inner Mongolia (NJZY13139)

  • 摘要: 多声道音频信号在采集、压缩、传输过程中可能造成音频数据丢失,为了确保给听众带来更真实的听觉感受,该文提出一种基于低秩张量补全的音频丢失数据恢复方法。首先,把多声道音频信号表示为一个张量;其次,把张量补全作为一个凸优化问题建模,利用松弛技术和变量分离技术得到闭合的增强拉格朗日函数;最后,通过交替迭代方法求解得到恢复的音频张量。在不同数据丢失率的实验中,通过与线性预测、加权优化的CANDECOMP /PARAFAC分解方法进行对比分析,表明利用张量补全方法具有更高的音频信号恢复精度,隐藏参考和基准的多激励测试结果也显示低秩张量补全方法能够有效地恢复多声道音频的丢失数据,从而获得更好的听觉效果。
  • 王磊, 周乐囡, 姬红兵, 等. 一种面向信号分类的匹配追踪新方法[J]. 电子与信息学报, 2014, 36(6): 1299-1306. doi: 10.3724/SP.J.1146.2013.00942.
    WANG Lei, ZHOU Lenan, JI Hongbing, et al. A new matching pursuit algorithm for signal classification[J]. Journal of Electronics Information Technology, 2014, 36(6): 1299-1306. doi: 10.3724/SP.J.1146.2013.00942.
    VASEGHI S and FRANYLING C. Restoration of old gramophone recordings[J]. AES Journal of the Audio Engineering Society, 1992, 40(10): 791-801.
    高悦, 陈砚圃, 闵刚, 等. 基于线性预测分析和差分变换的语音信号压缩感知[J]. 电子与信息学报, 2012, 34(6): 1408-1413. doi: 10.3724/SP.J.1146.2011.01001.
    GAO Yue, CHEN Yanpu, MIN Gang, et al. Compressed sensing of speech signals based on linear prediction coefficients and difference transformation[J]. Journal of Electronics Information Technology, 2012, 34(6): 1408-1413. doi: 10.3724/SP.J.1146.2011.01001.
    COCCHI G and UNCINI A. Subbands audio signal recovering using neural nonlinear prediction[C]. Proceedings of the 2001 International Conference on Acoustics, Speech and Signal Processing (ICASSP), Salt Lake City, UT, USA, 2001: 1289-1292.
    朱墨, 吴国清, 郭新毅. 基于盲解卷积的水声信号恢复技术[J].应用声学, 2011, 30(3): 177-186. doi:10.3969/j.issn. 1000- 310X.2011.03.003.
    ZHU Mo, WU Guoqing, and GUO Xinyi. An underwater signal recovery technique based on blind deconvolution[J]. Journal of Applied Acoustics, 2011, 30(3): 177-186. doi: 10.3969/j.issn.1000-310X.2011.03.003.
    ACAR E, DUNLAVY D M, KOLDA T G, et al. Scalable tensor factorizations with missing data[C]. Proceedings of the 10th SIAM International Conference on Data Mining, Columbus, OH, United States, 2010: 701-712.
    ZHAO Qibin, ZHANG Liqing, and CICHOCKI A. Bayesian CP factorization of incomplete tensors with automatic rank determination[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(9): 1751-1763. doi: 10.1109/TPAMI.2015.2392756.
    TAN Huachun, WU Yuankai, FENG Guangdong, et al. A new traffic prediction method based on dynamic tensor completion[J]. Procedia-Social and Behavioral Sciences, 2013, 96(8): 2431-2442. doi: 10.1016/j.sbspro.2013.08.272.
    LIU Yuanyuan and SHANG Fanhua. An efficient matrix factorization method for tensor completion[J]. IEEE Signal Processing Letters, 2013, 20(4): 307-310. doi:10.1109/LSP. 2013.2245416.
    刘园园. 快速低秩矩阵与张量恢复的算法研究[D]. [博士论文] ,西安电子科技大学, 2013. doi: 10.7666/d.D363665.
    LIU Yuanyuan. Algorithm research of fast low-rank matrix and tensor recovery[D]. [Ph.D. dissertation], Xidian University, 2013. doi: 10.7666/d.D363665.
    樊劲宇, 顾红, 苏卫民, 等. 基于张量分解的互质阵MIMO 雷达目标多参数估计方法[J]. 电子与信息学报, 2015, 37(4): 933-938. doi: 10.11999/JEIT140826.
    FAN Jinyu, GU Hong, SU Weimin, et al. Co-prime MIMO radar multi-parameter estimation based on tensor decomposition[J]. Journal of Electronics Information Technology, 2015, 37(4): 933-938. doi: 10.11999/JEIT140826.
    CICHOCKI A, ZDUNEK R, PHAN A H, et al. Nonnegative matrix and tensor factorizations[M]. Chichester, WS: John Wiley Sons, 2009: 28-31.
    LERMAN G and ZHANG T. Robust recovery of multiple subspaces by geometric lp minimization[J]. Annals of Statistics, 2011, 39(5): 2686-2715. doi: 10.1214/11-AOS914.
    CHEN Y, HSU C, and LIAO H M. Simultaneous tensor decomposition and completion using factor priors[J]. IEEE Transactions on Software Engineering, 2014, 36(3): 577-591. doi: 10.1109/TPAMI.2013.164.
    RECHT B, FAZEL M, and PARRILO P. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J]. SIAM Review, 2010, 52(3): 471-501.
    LIU Ji, MUSIALSKI P, WONKA P, et al. Tensor completion for estimating missing values in visual data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 208-2121. doi: 10.1109/TPAMI.20125.39.
    GANDY S, RECHT B, and YAMADA I. Tensor completion and low-n-rank tensor recovery via convex optimization[J]. Inverse Problems, 2011, 27(2): 25010-25028.
  • 加载中
计量
  • 文章访问数:  1644
  • HTML全文浏览量:  195
  • PDF下载量:  600
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-18
  • 修回日期:  2015-11-02
  • 刊出日期:  2016-02-19

目录

    /

    返回文章
    返回