高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于子空间旋转变换的低复杂度波达角估计算法

闫锋刚 齐晓辉 刘帅 沈毅 金铭

闫锋刚, 齐晓辉, 刘帅, 沈毅, 金铭. 基于子空间旋转变换的低复杂度波达角估计算法[J]. 电子与信息学报, 2016, 38(3): 629-634. doi: 10.11999/JEIT150539
引用本文: 闫锋刚, 齐晓辉, 刘帅, 沈毅, 金铭. 基于子空间旋转变换的低复杂度波达角估计算法[J]. 电子与信息学报, 2016, 38(3): 629-634. doi: 10.11999/JEIT150539
YAN Fenggang, QI Xiaohui, LIU Shuai, SHEN Yi, JIN Ming. Low-complexity DOA Estimation via Subspace Rotation Technique[J]. Journal of Electronics & Information Technology, 2016, 38(3): 629-634. doi: 10.11999/JEIT150539
Citation: YAN Fenggang, QI Xiaohui, LIU Shuai, SHEN Yi, JIN Ming. Low-complexity DOA Estimation via Subspace Rotation Technique[J]. Journal of Electronics & Information Technology, 2016, 38(3): 629-634. doi: 10.11999/JEIT150539

基于子空间旋转变换的低复杂度波达角估计算法

doi: 10.11999/JEIT150539
基金项目: 

国家自然基金(61501142),山东省自然科学基金(ZR2014FQ003),中国博士后科学基金(2015M571414),中央高校基本科研业务费专项资金(HIT.NSRIF.2016102)

Low-complexity DOA Estimation via Subspace Rotation Technique

Funds: 

The National Natural Science Foundation of China (61501142), Shandong Provincial Natural Science Foundation (ZR2014FQ003), China Postdoctoral Science Foundation (2015M571414), The Fundamental Research Funds for the Central Universities (HIT.NSRIF.2016102)

  • 摘要: 多重信号分选(MUltiple SIgnal Classification, MUSIC)算法是波达方向(Direction-Of-Arrival, DOA)估计的最重要算法之一,但庞大的计算量使其工程实用性大打折扣。为降低MUSIC的计算量,该文基于子空间旋转(Subspace Rotation Technique, SRT)变换思想提出了一种高效改进算法,即SRT-MUSIC算法。SRT-MUSIC利用秩亏特性对噪声子空间矩阵按行分块并以旋转变换得到降维噪声子空间,进而基于该降维噪声子空间与导向矢量的正交性构造空间谱估计信号DOA。理论分析表明:SRT-MUSIC能有效避免空间谱搜索中的冗余运算,从而成倍降低算法的计算量。对于大阵元、少信号情况,所提算法计算效率优势更为明显。仿真实验证明了SRT-MUSIC的有效性和高效性。
  • SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas Propagation, 1986, 34(3): 276-280.
    GU J F, ZHU W P, and SWAMY M N S. Joint 2-D DOA estimation via sparse L-shaped array[J]. IEEE Transactions on Signal Processing, 2015, 63(5): 1171-1182.
    毛琳琳, 张群飞, 黄建国, 等. 基于互相关协方差矩阵的改进多重信号分类高分辨波达方位估计方法[J]. 电子与信息学报, 2015, 37(8): 1886-1891. doi: 10.11999/JEIT141208.
    MAO L L, ZHANG Q F, HUANG J G, et al. Improved multiple signal classification algorithm for direction of arrival estimation based on covariance matrix of cross-correlation[J]. Journal of Electronics Information Technology, 2015, 37(8): 1886-1891. doi: 10.11999/JEIT141208.
    LIU Z M and GUO F C. Azimuth and elevation estimation with rotating long-baseline interferometers[J]. IEEE Transactions on Signal Processing, 2015, 63(9): 2405-2419.
    REDDY W, MUBEEN M and NG B P. Reduced- complexity super-resolution DOA estimation with unknown number of sources[J]. IEEE Signal Processing Letters, 2015, 22(6): 772-776.
    ROEMER F, et al. Analytical performance assessment of multidimensional matrix- and tensor-based ESPRIT-type algorithms[J]. IEEE Transactions on Signal Processing, 2014, 62(10): 2611-2625.
    YAN F G, SHEN Y, and JIN M. Fast DOA estimation based on a split subspace decomposition on the array covariance matrix[J]. Signal Processing, 2015, 115(10): 1-8.
    闫锋刚, 王军, 沈毅, 等. 基于半实值Capon的高效波达方向估计算法[J]. 电子与信息学报, 2015, 37(4): 811-816. doi: 10.11999/JEIT141034.
    YAN F G, WANG J, SHEN Y, et al. Efficient direction- of-arrival estimation based on semi-real-valued capon[J]. Journal of Electronics Information Technology, 2015, 37(4): 811-816. doi: 10.11999/JEIT141034.
    CHENG Q, HUANG L, and SO H C. Improved unitary root- MUSIC for DOA estimation based on pseudo-noise resampling[J]. IEEE Signal Processing Letters, 2014, 21(2): 140-144.
    蔡晶晶, 等. 强约束优化降维MUSIC二维DOA估计[J]. 电子与信息学报, 2014, 36(5): 113-118. doi: 10.3724/SP.J.1146. 2013.01127.
    CAI J J, et al. Two-dimensional DOA estimation using reduced-dimensional MUSIC algorithm with strong- constraint optimization[J]. Journal of Electronics Information Technology, 2014, 36(5): 113-118. doi: 10.3724/SP.J.1146. 2013.01127.
    HUA G, et al. Efficient two dimensional direction finding via auxiliary-variable manifold separation technique for arbitrary array structure[C]. IEEE International Conference on Communication Problem-solving (ICCP), Beijing, 2014, 532-537.
    RUBSAMEN M and GERSHMAN A B. Direction- of-arrival estimation for nonuniform sensor arrays: from manifold separation to Fourier domain MUSIC methods[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 588-599.
    YAN F G, JIN M, LIU S, et al. Real-valued MUSIC for efficient direction estimation with arbitrary array geometries [J]. IEEE Transactions on Signal Processing, 2014, 62(6): 1548-1560.
    GOLUB G H and ChARES VAN LOAN H. Matrix Computations[M]. Baltimore, MD: The Johns Hopkins University Press, 1996: 238-246.
    XU G and KAILATH T. Fast subspace decomposition[J]. IEEE Transactions on Signal Processing, 199, 42(3): 539-551.
    REN Q S and WILLIS A J. Fast root MUSIC algorithm[J]. Electronics Letters, 1997, 33(6): 450-451.
    ZHANH Q T. Probability of resolution of the MUSIC algorithm[J]. IEEE Transactions on Signal Processing, 1994, 43(4): 978-987.
  • 加载中
计量
  • 文章访问数:  1622
  • HTML全文浏览量:  174
  • PDF下载量:  567
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-07
  • 修回日期:  2015-12-18
  • 刊出日期:  2016-03-19

目录

    /

    返回文章
    返回