高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相似性约束的深度置信网络在SAR图像目标识别的应用

丁军 刘宏伟 陈渤 冯博 王英华

丁军, 刘宏伟, 陈渤, 冯博, 王英华. 相似性约束的深度置信网络在SAR图像目标识别的应用[J]. 电子与信息学报, 2016, 38(1): 97-103. doi: 10.11999/JEIT150366
引用本文: 丁军, 刘宏伟, 陈渤, 冯博, 王英华. 相似性约束的深度置信网络在SAR图像目标识别的应用[J]. 电子与信息学报, 2016, 38(1): 97-103. doi: 10.11999/JEIT150366
DING Jun, LIU Hongwei, CHEN Bo, FENG Bo, WANG Yinghua. Similarity Constrained Deep Belief Networks with Application to SAR Image Target Recognition[J]. Journal of Electronics & Information Technology, 2016, 38(1): 97-103. doi: 10.11999/JEIT150366
Citation: DING Jun, LIU Hongwei, CHEN Bo, FENG Bo, WANG Yinghua. Similarity Constrained Deep Belief Networks with Application to SAR Image Target Recognition[J]. Journal of Electronics & Information Technology, 2016, 38(1): 97-103. doi: 10.11999/JEIT150366

相似性约束的深度置信网络在SAR图像目标识别的应用

doi: 10.11999/JEIT150366
基金项目: 

国家自然科学基金(61372132, 61201292),新世纪优秀人才支持计划(NCET-13-0945),青年千人计划

Similarity Constrained Deep Belief Networks with Application to SAR Image Target Recognition

Funds: 

The National Natural Science Foundation of China (61372132, 61201292), The Program for New Century Excellent Talents (NCET-13-0945), The Program for Young Thousand Talent by Chinese Central Government

  • 摘要: 特征提取是合成孔径雷达(SAR)图像目标识别的关键环节。SAR图像中存在的相干斑点和非光滑特性使得传统针对光学图像的特征提取方法变得很难应用。虽然可以采用深度置信网络(DBN)自动地进行特征学习,但是该方法属于无监督学习方法,这使得学习到的特征与具体的任务是无关的。该文提出一种叫做相似性约束的受限玻尔兹曼机模型。该模型在学习过程中通过约束特征向量之间的相似性达到引入监督信息的目的。另外,可以将多个相似性约束的受限玻尔兹曼机堆叠成一种新的深度模型,称其为相似性约束的深度置信网络模型。实验结果表明在SAR图像目标识别应用中,该方法相比主成分分析(PCA)以及原始DBN具有更好的识别性能。
  • ZHAO Qun, PRINCIPE J C, et al. Support vector machines for SAR automatic target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 643-655.
    SUN Yijun, LIU Zhipeng, TODOROVIC S, et al. Adaptive boosting for synthetic aperture radar automatic target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 112-125.
    ZHOU Jianxiong, SHI Zhiguang, CHENG Xiao, et al. Automatic target recognition of SAR images based on global scattering center model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3713-3729.
    PARK Jong-II, PARK Sang-hong, and KIM Kyung-tae. New discrimination features for SAR automatic target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 476-480.
    ABDEL-RAHMAN M, GEORGE D, and GEOFFREY H. Acoustic modeling using deep belief networks [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1): 14-22.
    NAVDEEP J and GEOFFREY H. Learning a better representation of speech soundwaves using restricted Boltzmann machines[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, 2011: 5884-5887.
    WU Yue, WANG Zuoguan, and JI Qiang. Facial feature tracking under varying facial expressions and face poses based on RBM[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, 2013: 3452-3459.
    HUGO L and YOSHUA B. Classification using discriminative restricted Boltzmann machines[C]. International Conference on Machine Learning, New York, NY, USA, 2008: 536-543.
    UMAMAHESH S, VISHAL M, and RAJ Raghu G. SAR automatic target recognition using discriminative graphical models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 591-606.
    LIU M, WU Y, ZHANG P, et al. SAR target configuration recognition using locality preserving property and Gaussian mixture distribution[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 268-272.
    YOSHUA B, AARON C, and PASCAL V. Representation learning: A review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
    FISCHER A and IGEL C. Training restricted Boltzmann machines: An introduction[J]. Pattern Recognition, 2014, 47(1): 25-39.
    YOSHUA B, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[C]. Proceedings of Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2007: 153-160.
    GEOFFREY H. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8): 1771-1800.
    HE Xiaofei, YAN Shuicheng, HU Yuxiao, et al. Face recognition using laplacianfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 加载中
计量
  • 文章访问数:  1616
  • HTML全文浏览量:  153
  • PDF下载量:  740
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-26
  • 修回日期:  2015-09-16
  • 刊出日期:  2016-01-19

目录

    /

    返回文章
    返回