高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多频段典型地表的双站雷达散射回波预测

张元元 吴振森 曹运华 张玉石

张元元, 吴振森, 曹运华, 张玉石. 多频段典型地表的双站雷达散射回波预测[J]. 电子与信息学报, 2015, 37(11): 2749-2755. doi: 10.11999/JEIT150301
引用本文: 张元元, 吴振森, 曹运华, 张玉石. 多频段典型地表的双站雷达散射回波预测[J]. 电子与信息学报, 2015, 37(11): 2749-2755. doi: 10.11999/JEIT150301
Zhang Yuan-yuan, Wu Zhen-sen, Cao Yun-hua, Zhang Yu-shi. Multi-band Bistatic Radar Echo Prediction from the Terrian Surfaces[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2749-2755. doi: 10.11999/JEIT150301
Citation: Zhang Yuan-yuan, Wu Zhen-sen, Cao Yun-hua, Zhang Yu-shi. Multi-band Bistatic Radar Echo Prediction from the Terrian Surfaces[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2749-2755. doi: 10.11999/JEIT150301

多频段典型地表的双站雷达散射回波预测

doi: 10.11999/JEIT150301
基金项目: 

国家自然科学基金(61172031)

Multi-band Bistatic Radar Echo Prediction from the Terrian Surfaces

Funds: 

The National Natural Science Foundation of China (61172031)

  • 摘要: 双站雷达在反隐身、超低空防御方面具有独特优势,但双站测量装置较为复杂,地表参数的准确获取工作耗时耗力,且精度难以保证,地表双站雷达散射数据极其匮乏。为解决上述问题,该文以L/S/X/Ku波段裸土、水泥地和粗糙沙地后向散射实测数据为例,忽略地表的精细结构,采用等效面散射模型和遗传算法反演了各地表的等效介电常数和粗糙度参数,获取其等效参数统计特征,实现对地表双站雷达散射回波的预测。结果表明:该等效面散射模型保证了地表的后向和双站散射回波预测精度;地表双站雷达散射回波随入射波频率的增大而增大;随散射角的增大先增大而后减小,并在镜像方向出现最大值;随散射方位角的增大,地表散射回波先减小而后增大,HH极化双站散射回波的最小值一般出现在 方位角处,而VV极化双站散射回波的最小值位置随入射角的增大从 方位角向小角度方向偏移,并与入射波频率、地表湿度以及粗糙度参数相关,该双站散射特性可用于地表参数的反演以及目标的反隐身研究。
  • Schlund M, Poncet F V, Hoekman D H, et al.. Importance of bistatic SAR features from TanDEM-X for forest mapping and monitoring[J]. Remote Sensing of Environment, 2014, 151(8): 16-26.
    Gupta D K, Kumar P, Mishara V N, et al.. Bistatic measurements for the estimation of Rice crop variables using artifical neural network[J]. Advances in Space Reasearch, 2015(55): 1613-1623.
    Nashashibi A Y and Ulaby F T. MMW polarimetric radar bistatic scattering from a random surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6): 1743-1755.
    Johnson J T and Ouellette J D. Polarization features in bistatic scattering from rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1616-1626.
    Ulaby F T, Moore R K, and Fung A K. Microwave Remote Sensing[M]. Massachusetts: Artech House, 1990, Vol. 2, Chapter 11.
    Panciera R, Tanase M A, Lowell K, et al.. Evaluation of IEM, Dubois, and Oh radar backscatter models using airborne L-band SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4966-4979.
    张文吉, 张晓娟, 李芳. 分层土壤后向散射及其在深层土壤湿度探测中的应用[J]. 电子与信息学报, 2008, 30(9): 2107-2110.
    Zhang Wen-ji, Zhang Xiao-juan, and Li Fang. Backscattering from multilayer soil and its application to deep soil moisture estimation[J]. Journal of Electronics Information Technology, 2008, 30(9): 2107-2110.
    Tabatabaeenejad A, Burgin M, Duan X Y, et al.. P-band radar retrieval of subsurface soil moisture profile as a second-order polynomial: first AirMOSS results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 645-658.
    Nashashibi A Y, Sarabandi K, Al-Zaid F A, et al.. An empirical model of volume scattering from dry sand-covered surfaces at millimeter-wave frequencies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3673-3682.
    Sarabandi K, Li E S, and Nashashibi A. Modeling and measurements of scattering from road surfaces at millimeter-wave frequencies[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 45(11): 1679-1688.
    De Roo R D and Ulaby F T. Bistatic specular scattering from rough dielectric surfaces[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(2): 220-231.
    Khadhra K B, Boerner T, Hounam D, et al.. Surface parameter estimation using bistatic polarimetric X-band measurements[J]. Progress In Electromagnetics Research B, 2012, 39: 197-223.
    Mattia F, Davidson M, Le T T, et al.. Joint statistical properties of RMS height and correlation length derived from multisite 1-m roughness measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1651-1658.
    Su Z, Trochp A, and De Troch F P. Remote sensing of bare surface soil moisture using EMAC/ESAR data[J]. International Journal of Remote Sensing, 1997, 18(10): 2105-2124.
    Baghdadi N, King C, Chanzy A, et al.. An empirical calibration of the integral equation model based on SAR data, soil moisture and surface roughness measurement over bare soils[J]. International Journal of Remote Sensing, 2002, 23(20): 4325-4340.
    Lievens H and Verhoest N E C. On the retrieval of soil moisture in wheat fields from L-band SAR based on water cloud modeling, the IEM, and effective roughness parameters [J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 740-744.
    吕玉增, 刘永祥, 曹敏, 等. 基于遗传算法的一维散射散射中心提取研究[J]. 电子与信息学报, 2006, 28(1): 36-40.
    L Yu-zeng, Liu Yong-xiang, Cao-min, et al.. 1-D scattering centers extraction technique based on genetic algorithm[J]. Journal of Electronics Information Technology, 2006, 28(1): 36-40.
    严韬, 陈建文, 鲍拯. 基于改进遗传算法的天波超视距雷达二维阵列稀疏优化设计[J]. 电子与信息学报, 2014, 36(2): 3014-3020.
    Yan Tao, Chen Jian-wen, and Bao Zheng. Optimization design of sparse 2-D arrays for over-the-horizon radar (OTHR) based on improved genetic algorithm[J]. Journal of Electronics Information Technology, 2014, 36(2): 3014-3020.
    Wu T D, Chen K S, Shi Jian-cheng, et al.. A study of an AIEM model for bistatic scattering from randomly rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2584-2598.
  • 加载中
计量
  • 文章访问数:  1332
  • HTML全文浏览量:  71
  • PDF下载量:  562
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-11
  • 修回日期:  2015-06-29
  • 刊出日期:  2015-11-19

目录

    /

    返回文章
    返回