高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于遗传算法的IMX系统测试数据自动生成研究

冯霞 郝慧敏

冯霞, 郝慧敏. 基于遗传算法的IMX系统测试数据自动生成研究[J]. 电子与信息学报, 2015, 37(10): 2501-2507. doi: 10.11999/JEIT150291
引用本文: 冯霞, 郝慧敏. 基于遗传算法的IMX系统测试数据自动生成研究[J]. 电子与信息学报, 2015, 37(10): 2501-2507. doi: 10.11999/JEIT150291
Feng Xia, Hao Hui-min. Research on Automatic Generation of Test Data in MX Based on Genetic Algorithms[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2501-2507. doi: 10.11999/JEIT150291
Citation: Feng Xia, Hao Hui-min. Research on Automatic Generation of Test Data in MX Based on Genetic Algorithms[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2501-2507. doi: 10.11999/JEIT150291

基于遗传算法的IMX系统测试数据自动生成研究

doi: 10.11999/JEIT150291
基金项目: 

国际航空运输协会(IATA)资助项目(70003418)和国家科技支撑计划(2014BAJ04B02)

Research on Automatic Generation of Test Data in MX Based on Genetic Algorithms

Funds: 

The International Air Transport Association Fund (70003418)

  • 摘要: 利用遗传算法进行测试数据自动生成是近年来的研究热点,其有效性高度依赖于适应度函数的选取和初始种群的筛选。该文探索将遗传算法应用到IMX(Integrated Management X-software)系统测试数据自动生成以提高其回归测试的质量,将IMX系统专业测试人员手动生成的测试数据作为基础测试数据,并提出一种基于测试路径对目标路径覆盖率的初始种群筛选标准。在三角形程序和IMX系统平台上的实验表明,所提方法在寻找测试数据时所用的时间和迭代次数较少,且生成的测试数据具有较好的多样性。
  • Swain S and Mohapatra D P. Genetic Algorithm-Based Approach for Adequate Test Data Generation[M]. India: Intelligent Computing, Networking, and Informatics, Springer, 2014: 453-462.
    邝继顺, 刘杰镗, 张亮. 基于镜像对称参考切片的多扫描链测试数据压缩方法[J]. 电子与信息学报, 2015, 37(6): 1513-1519.
    Kuang Ji-shun, Liu Jie-tang, and Zhang Liang. Test data compression method for multiple scan chain based on mirror-symmetrical reference slices[J]. Journal of Electronics Information Technology, 2015, 37(6): 1513-1519.
    Michael C C, McGraw G E, Schatz M A, et al.. Genetic algorithms for dynamic test data generation[C]. Proceedings of the 12th IEEE International Conference on Automated Software Engineering, 1997: 307-308.
    张岩, 巩敦卫. 基于稀有数据扑捉的路径覆盖测试数据进化生成方法[J]. 计算机学报, 2013, 36(12): 2429-2440.
    Zhang Yan and Gong Dun-wei. Evolutionary generation of test data for paths coverage based on scarce data capturing[J]. Chinese Journal of Computers, 2013, 36(12): 2429-2440.
    刘向辉, 韩文报, 权建. 基于遗传策略的格基约化算法[J]. 电子与信息学报, 2013, 35(8): 1940-1945.
    Liu Xiang-hui, Han Wen-bao, and Quan Jian. A new lattice reduction algorithm based on genetic strategy[J]. Journal of Electronics Information Technology, 2013, 35(8): 1940-1945.
    Tian T and Gong D. Test data generation for path coverage of message-passing parallel programs based on co-evolutionary genetic algorithms[J]. Automated Software Engineering, 2014, 22(79): 1-32.
    严韬, 陈建文, 鲍拯. 基于改进遗传算法的天波超视距雷达二维阵列稀疏优化设计[J]. 电子与信息学报, 2014, 36(12): 3014-3020.
    Yan Tao, Chen Jian-wen, and Bao Zheng. Optimization design of sparse 2-D arrays for Over-The-Horizon Readar (OTHR) based on improved genetic algorithm[J]. Journal of Electronics Information Technology, 2014, 36(12): 3014-3020.
    巩敦卫, 任丽娜. 回归测试数据进化生成[J] . 计算机学报, 2014, 37(3): 489-499.
    Gong Dun-wei and Ren Li-na. Evolutionary genetation of regression test data[J]. Chinese Journal of Computers, 2014, 37(3): 489-499.
    曹凯, 陈国虎, 江桦, 等. 自适应引导进化遗传算法[J]. 电子与信息学报, 2014, 36(8): 1884-1890.
    Cao Kai, Chen Guo-hu, Jiang Hua, et al.. Guided self-adaptive evolutionary genetic algorithm[J]. Journal of Electronics Information Technology, 2014, 36(8): 1884-1890.
    徐宗本, 高勇. 遗传算法过早收敛现象的特征分析及其预防[J]. 中国科学: E 辑, 1996, 26(4): 364-375.
    Xu Zong-ben and Gao Yong. The analysis and prevention of genetic algorithm premature convergence[J]. Science in China (Series E), 1996, 26(4): 364-375.
    Suzuki J. A Markov chain analysis on simple genetic algorithms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1995, 25(4): 655-659.
    何大阔, 王福利, 贾明兴. 遗传算法初始种群与操作参数的均匀设计[J]. 东北大学学报: 自然科学版, 2005, 26(9): 828-831.
    He Da-kuo, Wang Fu-li, and Jia Ming-xing. Uniform design of initial population and operation parameters of genetic algorithm[J]. Journal of Northeastern University (Natural Science), 2005, 26(9): 828-831.
    Xuan J and Monperrus M. Test case purification for improving fault localization[C]. FSE 2014 Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, New York, NY, USA, 2014: 52-63.
    McMinn P. Evolutionary search for test data in the presence of state behaviour[D]. [Master dissertation], University of Sheffield, 2005: 1-242.
    Harman M and McMinn P. A theoretical and empirical study of search-based testing: local, global, and hybrid search[J]. IEEE Transactions on Software Engineering, 2010, 36(2): 226-247.
    Arcuri A. It does matter how you normalise the branch distance in search based software testing[C]. Proceedings of the 3rd International Conference on Software Testing, Verification and Validation, Pairs, France, 2010: 205-214.
    Xie X Y, Xu B W, Shi L, et al.. Genetic test case generation for path-oriented testing[J]. Journal of Software, 2009, 20(12): 3117-3136.
    雷英杰, 等. MATLAB 遗传算法工具箱及应用[M]. 西安: 西安电子科技大学出版社, 2005: 60-61.
    Lei Ying-jie, et al.. Application of Genetic Algorithm ToolBox Based on MATLAB[M]. Xian: Xidian University Publisher, 2005: 60-61.
    刘晓霞. 种群规模对遗传算法性能影响的研究[D]. [硕士论文], 华北电力大学, 2010: 1-37.
    Liu Xiao-xia. A research on population aize impaction on the performance of genetic algorithm[D]. [Master dissertation], North China Electric Power University, 2010: 1-37.
  • 加载中
计量
  • 文章访问数:  1240
  • HTML全文浏览量:  70
  • PDF下载量:  426
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-09
  • 修回日期:  2015-06-15
  • 刊出日期:  2015-10-19

目录

    /

    返回文章
    返回