Bruzzone L and Prieto D. Automatic analysis of the difference image for unsupervised change detection[J]. IEEE Transactions on Geoscience Remote Sensing, 2000, 38(3): 1171-1182.
|
Cha M, Nam M, and Geyer K. Joint SAR image compression and coherent change detection[C]. 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, 2014: 13-16.
|
曲世勃, 王彦平, 谭维贤, 等. 地基SAR形变监测误差分析与实验[J]. 电子与信息学报, 2011, 33(1): 1-7.
|
Qu Shi-bo, Wang Yan-ping, Tan Wei-xian, et al.. Deformation detection error analysis and experiment using ground based SAR[J]. Journal of Electronics Information Technology, 2011, 33(1): 1-7.
|
Zhang Bing-chen, Hong Wen, and Wu Yi-rong. Sparse microwave imaging: principles and applications[J]. Science China Information Sciences, 2012, 55(8): 1722-1754.
|
Patel V M, Easley G R, Healy D M, et al.. Compressed synthetic aperture radar[J]. IEEE Transactions on Signal Processing, 2010, 4(2): 244-254.
|
Hong Wen, Zhang Bing-chen, Zhang Zhe, et al.. Radar imaging with sparse constraint: principle and initial experiment[C]. 10th European Conference on Synthetic Aperture Radar (EUSAR), Berlin, 2014: 1-4.
|
Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
|
Stojanovic I, Novak L, and Karl W C. Interrupted SAR persistent surveillance via group sparse reconstruction of multipass data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 987-1003.
|
Hou Biao, Wei Qian, Zheng Yao-guo, et al.. Unsupervised change detection in SAR image based on Gauss-Log ratio image fusion and compressed projection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(8): 3297-3317.
|
Marco F D, Shriram S, Dror B D, et al.. Distributed compressed sensing of jointly sparse signals[C]. 39th Asilomar Conference on Signals, Systems and Computers, CA, USA, 2005: 1537-1541.
|
Lin Yue-guan, Zhang Bing-chen, Hong Wen, et al.. Multi- channel SAR imaging based on distributed compressive sensing[J]. Science China Information Sciences, 2012, 55(2): 245-259.
|
Candes E, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
|
Candes E and Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
|
Liu Jing-bo, Jin Jian, and Gu Yuan-tao. Relation between exact and robust recovery for F-minimization: a topological viewpoint[C]. 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), Istanbul, 2013: 859-863.
|
Ben-Haim Z, Eldar Y, and Elad M. Coherence-based performance guarantees for estimating a sparse vector under random noise[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5030-5043.
|
Donoho D L, Malekiy A, and Montanari A. The noise-sensitivity phase transition in compressed sensing[J]. IEEE Transactions on Information Theory, 2011, 57(10): 6920-6941.
|
Donoho D L, Johnstone I, and Montanari A. Accurate prediction of phase transitions in compressed sensing via a connection to minimax denoising[J]. IEEE Transactions on Information Theory, 2013, 59(6): 3396-3433.
|
Tian Ye, Jiang Cheng-long, Lin Yue-guan, et al.. An evaluation method for sparse microwave imaging radar system using phase diagrams[C]. Radar 2011 IEEE CIE International Conference, Chengdu, 2011, 1: 210-213.
|
Xiao Peng, Li Chun-sheng, and Yu Ze. Effects of noise, sampling rate and signal sparsity for compressed sensing Synthetic Aperture Radar pulse compression[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, 2011: 656-659.
|