高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相变图在稀疏微波成像变化检测降采样分析中的应用

田野 毕辉 张冰尘 洪文

田野, 毕辉, 张冰尘, 洪文. 相变图在稀疏微波成像变化检测降采样分析中的应用[J]. 电子与信息学报, 2015, 37(10): 2335-2341. doi: 10.11999/JEIT150272
引用本文: 田野, 毕辉, 张冰尘, 洪文. 相变图在稀疏微波成像变化检测降采样分析中的应用[J]. 电子与信息学报, 2015, 37(10): 2335-2341. doi: 10.11999/JEIT150272
Application of Phase Diagram to Sampling Ratio Analysis in Sparse Microwave Imaging Change Detection[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2335-2341. doi: 10.11999/JEIT150272
Citation: Application of Phase Diagram to Sampling Ratio Analysis in Sparse Microwave Imaging Change Detection[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2335-2341. doi: 10.11999/JEIT150272

相变图在稀疏微波成像变化检测降采样分析中的应用

doi: 10.11999/JEIT150272

Application of Phase Diagram to Sampling Ratio Analysis in Sparse Microwave Imaging Change Detection

  • 摘要: 相变图是稀疏微波成像雷达性能评估的一种重要方式,它可以准确刻画出雷达成像性能随稀疏度、采样比和信噪比3个参数的变化趋势,给出不同参数组合下场景准确重建的概率值。稀疏微波成像变化检测中,由于场景的变化相对于整个观测区域是稀疏的,利用分布式压缩感知方法可以在采样比组合满足一定条件下准确提取场景变化量。该文在场景稀疏度和信噪比不变的情况下,研究前后观测数据的采样比对变化检测结果的影响,绘制稀疏微波成像变化检测相变图,并利用相变图分析变化检测结果随前后两次观测的采样比参数的变化趋势,确定可以实现准确重建的采样比参数组合范围。最后通过仿真和实验验证相变图用于分析稀疏微波成像变化检测结果的可行性和有效性,为实际稀疏微波成像系统降低数据采集量和系统设计复杂度提供依据。
  • Bruzzone L and Prieto D. Automatic analysis of the difference image for unsupervised change detection[J]. IEEE Transactions on Geoscience Remote Sensing, 2000, 38(3): 1171-1182.
    Cha M, Nam M, and Geyer K. Joint SAR image compression and coherent change detection[C]. 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, 2014: 13-16.
    曲世勃, 王彦平, 谭维贤, 等. 地基SAR形变监测误差分析与实验[J]. 电子与信息学报, 2011, 33(1): 1-7.
    Qu Shi-bo, Wang Yan-ping, Tan Wei-xian, et al.. Deformation detection error analysis and experiment using ground based SAR[J]. Journal of Electronics Information Technology, 2011, 33(1): 1-7.
    Zhang Bing-chen, Hong Wen, and Wu Yi-rong. Sparse microwave imaging: principles and applications[J]. Science China Information Sciences, 2012, 55(8): 1722-1754.
    Patel V M, Easley G R, Healy D M, et al.. Compressed synthetic aperture radar[J]. IEEE Transactions on Signal Processing, 2010, 4(2): 244-254.
    Hong Wen, Zhang Bing-chen, Zhang Zhe, et al.. Radar imaging with sparse constraint: principle and initial experiment[C]. 10th European Conference on Synthetic Aperture Radar (EUSAR), Berlin, 2014: 1-4.
    Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    Stojanovic I, Novak L, and Karl W C. Interrupted SAR persistent surveillance via group sparse reconstruction of multipass data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 987-1003.
    Hou Biao, Wei Qian, Zheng Yao-guo, et al.. Unsupervised change detection in SAR image based on Gauss-Log ratio image fusion and compressed projection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(8): 3297-3317.
    Marco F D, Shriram S, Dror B D, et al.. Distributed compressed sensing of jointly sparse signals[C]. 39th Asilomar Conference on Signals, Systems and Computers, CA, USA, 2005: 1537-1541.
    Lin Yue-guan, Zhang Bing-chen, Hong Wen, et al.. Multi- channel SAR imaging based on distributed compressive sensing[J]. Science China Information Sciences, 2012, 55(2): 245-259.
    Candes E, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
    Candes E and Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
    Liu Jing-bo, Jin Jian, and Gu Yuan-tao. Relation between exact and robust recovery for F-minimization: a topological viewpoint[C]. 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), Istanbul, 2013: 859-863.
    Ben-Haim Z, Eldar Y, and Elad M. Coherence-based performance guarantees for estimating a sparse vector under random noise[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5030-5043.
    Donoho D L, Malekiy A, and Montanari A. The noise-sensitivity phase transition in compressed sensing[J]. IEEE Transactions on Information Theory, 2011, 57(10): 6920-6941.
    Donoho D L, Johnstone I, and Montanari A. Accurate prediction of phase transitions in compressed sensing via a connection to minimax denoising[J]. IEEE Transactions on Information Theory, 2013, 59(6): 3396-3433.
    Tian Ye, Jiang Cheng-long, Lin Yue-guan, et al.. An evaluation method for sparse microwave imaging radar system using phase diagrams[C]. Radar 2011 IEEE CIE International Conference, Chengdu, 2011, 1: 210-213.
    Xiao Peng, Li Chun-sheng, and Yu Ze. Effects of noise, sampling rate and signal sparsity for compressed sensing Synthetic Aperture Radar pulse compression[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, 2011: 656-659.
  • 加载中
计量
  • 文章访问数:  1558
  • HTML全文浏览量:  90
  • PDF下载量:  480
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-04
  • 修回日期:  2015-06-08
  • 刊出日期:  2015-10-19

目录

    /

    返回文章
    返回