高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变参数随机共振和归一化变换的时变信号检测与恢复

张海滨 何清波 孔凡让

张海滨, 何清波, 孔凡让. 基于变参数随机共振和归一化变换的时变信号检测与恢复[J]. 电子与信息学报, 2015, 37(9): 2124-2131. doi: 10.11999/JEIT141618
引用本文: 张海滨, 何清波, 孔凡让. 基于变参数随机共振和归一化变换的时变信号检测与恢复[J]. 电子与信息学报, 2015, 37(9): 2124-2131. doi: 10.11999/JEIT141618
Zhang Hai-bin, He Qing-bo, Kong Fan-rang. Time-varying Signal Detection and Recovery Method Based on Varying Parameter Stochastic Resonance and Normalization Transformation[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2124-2131. doi: 10.11999/JEIT141618
Citation: Zhang Hai-bin, He Qing-bo, Kong Fan-rang. Time-varying Signal Detection and Recovery Method Based on Varying Parameter Stochastic Resonance and Normalization Transformation[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2124-2131. doi: 10.11999/JEIT141618

基于变参数随机共振和归一化变换的时变信号检测与恢复

doi: 10.11999/JEIT141618
基金项目: 

国家自然科学基金(51475441, 11274300)

Time-varying Signal Detection and Recovery Method Based on Varying Parameter Stochastic Resonance and Normalization Transformation

  • 摘要: 非线性随机共振系统具有利用噪声增强微弱信号的能力,为强噪声背景下的信号检测开辟了新的途径。该文提出一种变参数随机共振(VPSR)模型,实现对非周期信号的有效检测、噪声去除和信号恢复。通过以恢复信号的拟合决定系数和互相关系数作为评判标准,研究分析了不同参数变化对系统输出的影响,分析结果表明该模型能有效地从噪声背景中恢复时变信号。该方法拓展了随机共振用于时变信号检测技术的领域,在时变信号检测和处理以及雷达通讯等方向有着一定的潜在应用价值。
  • Benzi R, Sutera A, and Vulpiani A. The mechanism of stochastic resonance[J]. Journal of Physics A: Mathematical and General, 1981, 14(11): L453-L457.
    Gammaitoni L, Hanggi P, Jung P, et al.. Stochastic resonance[J]. Reviews of Modern Physics, 1998, 70(1): 223-287.
    郑仕谱. 基于随机共振的弱信号提取方法研究[D]. [硕士论文], 浙江大学, 2014.
    Zheng Shi-pu. Study on weak signal extraction technology using stochastic resonance[D]. [Master dissertation], Zhejiang University, 2014.
    杨祥龙, 汪乐宇. 一种强噪声背景下弱信号检测的非线性方法[J]. 电子与信息学报, 2002, 24(6): 811-815.
    Yang Xiang-long and Wang Le-yu. A new detection method of weak signal in strong background-noise level[J]. Journal of Electronics Information Technology, 2002, 24(6): 811-815.
    梁军利, 杨树元, 唐志峰. 基于随机共振的微弱信号检测[J]. 电子与信息学报, 2006, 28(6): 1068-1072.
    Liang Jun-li, Yang Shu-yuan, and Tang Zhi-feng. Weak signal detection based on stochastic resonance[J]. Journal of Electronics Information Technology, 2006, 28(6): 1068-1072.
    王强. 基于变步长随机共振的弱信号检测技术[J]. 信息通信, 2014, 12(8): 25.
    Wang Qiang. Weak signal detection based on step-change stochastic resonance[J]. Information Communications, 2014, 12(8): 25.
    Li Ji-meng, Chen Xue-feng, and He Zheng-jia. Multi-stable stochastic resonance and its application research on mechanical fault diagnosis[J]. Journal of Sound and Vibration, 2013, 332(22): 5999-6015.
    冷永刚, 田祥友. 一阶线性系统随机共振在转子轴故障诊断中的应用研究[J]. 振动与冲击, 2014, 62(17): 1-5.
    Leng Yong-gang and Tian Xiang-you. Application of a first-order linear system's stochastic resonance in fault diagnosis of rotor shaft[J]. Journal of Vibration and Shock, 2014, 62(17): 1-5.
    Lu Si-liang, He Qing-bo, and Kong Fan-rang. Stochastic resonance with Woods-Saxon potential for rolling element bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2014, 45(2): 488-503.
    Xu Jia-wen, Shao Wei-wei, Kong Fan-rang, et al.. Right-angle piezoelectric cantilever with improved energy harvesting efficiency[J]. Applied Physics Letters, 2010, 96(15): 152904(1-3).
    Harne R L and Wang K W. A review of the recent research on vibration energy harvesting via bistable systems[J]. Smart Materials and Structures, 2013, 22(2): 023001(1-12).
    朱文涛, 苏涛, 杨涛, 等. 线性调频连续波信号检测与参数估计算法[J]. 电子与信息学报, 2014, 36(3): 552-558.
    Zhu Wen-tao, Su Tao, Yang Tao, et al.. Detection and parameter estimation of linear frequency modulation continuous wave signal[J]. Journal of Electronics Information Technology, 2014, 36(3): 552-558.
    朱健东, 赵拥军, 唐江. 线性调频连续波信号的周期分数阶Fourier变换检测与估计[J]. 电子与信息学报, 2013, 35(8): 1827-1833.
    Zhu Jian-dong, Zhao Yong-jun, and Tang Jiang. Periodic FRFT based detection and estimation for LFMCW signal[J]. Journal of Electronics Information Technology, 2013, 35(8): 1827-1833.
    Collins J J, Chow C C, Capela A C, et al.. Aperiodic stochastic resonance[J]. Physical Review E, 1996, 54(5): 5575-5584.
    段江海, 宋爱国. 双稳系统中非周期随机共振的数值仿真[J]. 电路与系统学报, 2004, 9(5): 149-152.
    Duan Jiang-hai and Song Ai-guo. Numerical simulations of aperiodic stochastic resonance in bistable systems[J]. Journal of Circuits and Systems, 2004, 9(5): 149-152.
    Wang Xiao-min and Wen Chuan. Detection and parameter estimation of LFM signal based on stochastic resonance[C]. Proceedings of the 2011 2nd International Conference on Networking and Information Technology, Singapore, 2011, 112-119.
    Peng Hao, Zhong Su-chuan, Tu Zhe, et al.. Stochastic resonance of over-damped bistable system driven by chirp signal and Gaussian white noise[J]. Acta Physica Sinica, 2013, 62(8): 080501(1-6).
    Yang Ding-xin, Hu Zheng, and Yang Yong-min. The analysis of stochastic resonance of periodic signal with large parameters[J]. Acta Physica Sinica, 2012, 61(8): 080501(1-10).
    Leng Yong-gang, Wang Tai-yong, Qin Xu-da, et al.. Power spectrum research of twice sampling stochastic resonance response in a bistable system[J]. Acta Physica Sinica, 2004, 53(3): 717-723.
  • 加载中
计量
  • 文章访问数:  1242
  • HTML全文浏览量:  139
  • PDF下载量:  544
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-18
  • 修回日期:  2015-02-15
  • 刊出日期:  2015-09-19

目录

    /

    返回文章
    返回