高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

齐次F5算法的简单终止性证明

潘森杉 胡予濮 王保仓

潘森杉, 胡予濮, 王保仓. 齐次F5算法的简单终止性证明[J]. 电子与信息学报, 2015, 37(8): 1989-1993. doi: 10.11999/JEIT141601
引用本文: 潘森杉, 胡予濮, 王保仓. 齐次F5算法的简单终止性证明[J]. 电子与信息学报, 2015, 37(8): 1989-1993. doi: 10.11999/JEIT141601
Pan Sen-shan, Hu Yu-pu, Wang Bao-cang. Simpler Termination Proof on Homogeneous F5 Algorithm[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1989-1993. doi: 10.11999/JEIT141601
Citation: Pan Sen-shan, Hu Yu-pu, Wang Bao-cang. Simpler Termination Proof on Homogeneous F5 Algorithm[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1989-1993. doi: 10.11999/JEIT141601

齐次F5算法的简单终止性证明

doi: 10.11999/JEIT141601
基金项目: 

国家自然科学基金(61173151, 61173152)

Simpler Termination Proof on Homogeneous F5 Algorithm

  • 摘要: 自从F5算法提出以来,出现了一批基于标签的Grbner基算法,它们使用了不同的选择策略且减少冗余多项式的准则也各不相同。为了满足正确终止性,这些算法的策略和准则必须满足一些一般的规律。根据这些规律,该文提出了一个框架,使大多数算法成为该框架的实例。随后,利用重写基的性质,得到了框架的简单正确终止证明。为了得到F5算法的简单证明,该文对F5算法的约化操作进行合理的化简。特别地,对于齐次F5算法,证明了其复杂的选择策略等价于按模序选择。这样,齐次F5算法就能看成框架的一个特例,从而得到了F5算法的简单证明。
  • Buchberger B. Ein algorithmus zum auffinden der basiselemente des restklassenrings nach einem nulldimensionalen polynomideal[D]. [Ph.D. dissertation], Universitt Innsbruck, Austria, 1965.
    Faugre J C. A new efficient algorithm for computing Grbner bases (F4)[J]. Journal of Pure and Applied Algebra, 1999, 139(1-3): 61-88.
    Faugre J C. A new efficient algorithm for computing Grbner bases without reduction to zero (F5)[C]. Proceedings of the 27th International Symposium on Symbolic and Algebraic Computation, New York, USA, 2002: 75-83.
    Arri A and Perry J. The F5 criterion revised[J]. Journal of Symbolic Computation, 2011, 46(9): 1017-1029.
    Gao Shu-hong, Guan Yin-hua, and Volny F IV. A new incremental algorithm for computing Groebner bases[C]. Proceedings of the 35th International Symposium on Symbolic and Algebraic Computation, New York, USA, 2010: 13-19.
    Volny F. New algorithms for computing Grbner bases[D]. [Ph.D. dissertation], Clemson University, USA, 2011.
    Sun Yao and Wang Ding-kang. A generalized criterion for signature related Grbner basis algorithms[C]. Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, New York, USA, 2011: 337-344.
    Eder C and Perry J. Signature-based algorithms to compute Grbner bases[C]. Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, New York, USA, 2011: 99-106.
    Pan Sen-shan, Hu Yu-pu, and Wang Bao-cang. The termination of the F5 algorithm revisited[C]. Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, New York, USA, 2013: 291-298.
    Eder C and Roune B H. Signature rewriting in Grbner basis computation[C]. Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, New York, USA, 2013: 331-338.
    Eder C. An analysis of inhomogeneous signature-based Grbner basis computations[J]. Journal of Symbolic Computation, 2013, 59(0): 21-35.
    Ding Jin-tai, Cabarcas D, Schmidt D, et al.. Mutant Grbner basis algorithm[C]. Proceedings of the 1st International Conference on Symbolic Computation and Cryptography, Beijing, China, 2008: 23-32.
  • 加载中
计量
  • 文章访问数:  1209
  • HTML全文浏览量:  165
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-23
  • 修回日期:  2015-04-24
  • 刊出日期:  2015-08-19

目录

    /

    返回文章
    返回