高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于差值映射的压缩感知MUSIC算法

吕志丰 雷宏

吕志丰, 雷宏. 基于差值映射的压缩感知MUSIC算法[J]. 电子与信息学报, 2015, 37(8): 1874-1878. doi: 10.11999/JEIT141542
引用本文: 吕志丰, 雷宏. 基于差值映射的压缩感知MUSIC算法[J]. 电子与信息学报, 2015, 37(8): 1874-1878. doi: 10.11999/JEIT141542
Lü Zhi-feng, Lei Hong. Compressive Sensing MUSIC Algorithm Based on Difference Map[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1874-1878. doi: 10.11999/JEIT141542
Citation: Lü Zhi-feng, Lei Hong. Compressive Sensing MUSIC Algorithm Based on Difference Map[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1874-1878. doi: 10.11999/JEIT141542

基于差值映射的压缩感知MUSIC算法

doi: 10.11999/JEIT141542

Compressive Sensing MUSIC Algorithm Based on Difference Map

  • 摘要: 多快拍(MMV)问题旨在恢复具有相同稀疏结构的多列信号。在传统阵列信号处理中MMV问题的求解通常采用多重信号分类(MUSIC)等确定性方法实现,但当快拍数不足或存在相干源时该类方法失效;而在压缩感知(CS)的概率求解模型下,即使信源相干也能得到恢复结果,但现有算法普遍性能不足。近期Kim等人的研究表明,将CS与MUSIC相结合可得到比二者更加优秀的性能和更为宽泛的使用条件,该方法被称作压缩感知 MUSIC或CS-MUSIC算法。作为一种投影型非凸优化算法,差值映射(DM)最早用于解决X射线晶体学中的相位恢复问题,并逐渐在其他非凸及压缩感知问题的求解中展示出优良性能。该文提出一种基于差值映射的CS-MUSIC算法,仿真结果表明该算法在MMV问题求解中十分有效,相比经典CS-MUSIC具有更高的恢复成功率。
  • Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    Cades E, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
    Fang L Y, Li S T, Ryan P, et al.. Fast acquisition and reconstruction of optical coherence tomography images via sparse representation[J]. IEEE Transactions on Medical Imaging, 2013, 32(11): 2034-2049.
    Yang J, Thompson J, Huang X T, et al.. Segmented reconstruction for compressed sensing SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4214-4225.
    Friedland, S, Li Q, and Schonfeld D. Compressive sensing of sparse tensors[J]. IEEE Transactions on Image Processing, 2014, 23(10): 4438-4447.
    Hawes M B and Liu W. Robust sparse antenna array design via compressive sensing[C]. IEEE International Conference on Digital Signal Processing, Nice, France, 2013: 1-5.
    Northardt E T, Bilik I, and Abramovich Y I. Spatial compressive sensing for direction-of-arrival estimation with bias mitigation via expected likelihood[J]. IEEE Transactions on Signal Processing, 2013, 61(5): 1183-1195.
    Nagahara M, Quevedo D E, and Ostergaard J. Sparse packetized predictive control for networked control over erasure channels[J]. IEEE Transactions on Automatic Control, 2014, 59(7): 1899-1905.
    Krim H and Viberg M. Two decades of array signal processing research: the parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94.
    Schmidt R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas ?and Propagation, 1986, 34(3): 276-280.
    Kim J M, Lee O K, and Ye J C. Compressive MUSIC: revisiting the link between compressive sensing and array signal processing[J]. IEEE Transactions on Information Theory, 2012, 58(1): 278-301.
    Lee K and Bresler Y. Subspace-augmented MUSIC for joint sparse recovery with any rank[C]. Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop, Jerusalem, Israel, 2010: 205-208.
    Elser V. Phase retrieval by iterated projections[J]. Journal of the Optical Society of America A, 2003, 20(1): 40-55.
    Elser V, Rankenburg I, and Thibault P. Searching with iterated maps[J]. Proceedings of the National Academy of Sciences, 2007, 104(2): 418-423.
    Eldar Y C, Sidorenko P, Mixon D G, et al.. Sparse phase retrieval from short-time Fourier measurements[J]. IEEE Signal Processing Letters, 2015, 22(5): 638-642.
    Shechtman Y, Beck A, and Eldar Y C. GESPAR: efficient phase retrieval of sparse signals[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 928-938.
    Qiu K and Dogandzic A. Nonnegative signal reconstruction from compressive samples via a difference map ECME algorithm[C]. Proceedings of the IEEE Statistical Signal Processing Workshop, Nice, France, 2011: 561-564.
    Landecker W, Chartrand R, and DeDeo S. Robust compressed sensing and sparse coding with the difference map[C]. IEEE European Conference on Computer Vision, Zurich, Switzerland, 2014: 315-329.
    Feng P. Universal minimum-rate sampling and spectrum-blind reconstruction for multiband signals[D]. [Ph.D. dissertation], University of Illinois, Urbana-Champaign, 1997.
    Chen J and Huo X. Theoretical results on sparse representations of multiple measurement vectors[J]. IEEE Transactions on Signal Processing, 2006, 54(12): 4634-4643.
    Tropp J A, Gilbert A C, and Strauss M J. Algorithms for simultaneous sparse approximation, Part I: Greedy pursuit[J]. Signal Processing, 2006, 86(3): 572-588.
    Malioutov D, Cetin M, and Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022.
    Tropp J A. Algorithms for simultaneous sparse approximation. Part II: Convex relaxation[J]. Signal Processing, 2006, 86(3): 589-602.
    Wipf D P. Bayesian methods for finding sparse representations[D]. [Ph.D. dissertation], University of California, San Diego, 2006.
    Mishali M and Eldar Y C. Reduce and boost: recovering arbitrary sets of jointly sparse vectors[J]. IEEE Transactions on Signal Processing, 2008, 56(10): 4692-4702.
    Eldar Y C, Kuppinger P, and Bolcskei H. Compressed sensing of block-sparse signals: uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3042-3054.
    Baraniuk R G, Cevher V, Duarte M F, et al.. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1982-2001.
    Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408-1418.
    Roy R and Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(7): 984-995.
    Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.
    Bauschke H and Borwein J. On projection algorithms for solving convex feasibility problems[J]. SIAM Review, 1996, 38(3): 367-426.
    Adiga A and Seelamantula C S. An alternating Lp-L2 projections algorithm (ALPA) for speech modeling using sparsity constraints[C]. IEEE International Conference on Digital Signal Processing, Hong Kong, China, 2014: 291-296.
    Yan W, Wang Q, and Shen Y. Shrinkage-based alternating projection algorithm for efficient measurement matrix construction in compressive sensing[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(5): 1073-1084.
    Hesse R, Luke D R, and Neumann P. Alternating projections and Douglas-Rachford for sparse affine feasibility[J]. IEEE Transactions on Signal Processing, 2014, 62(18): 4868-4881.
  • 加载中
计量
  • 文章访问数:  1421
  • HTML全文浏览量:  154
  • PDF下载量:  684
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-04
  • 修回日期:  2015-03-13
  • 刊出日期:  2015-08-19

目录

    /

    返回文章
    返回