高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最小点覆盖和反馈点集的社交网络影响最大化算法

许宇光 潘惊治 谢惠扬

许宇光, 潘惊治, 谢惠扬. 基于最小点覆盖和反馈点集的社交网络影响最大化算法[J]. 电子与信息学报, 2016, 38(4): 795-802. doi: 10.11999/IEIT160019
引用本文: 许宇光, 潘惊治, 谢惠扬. 基于最小点覆盖和反馈点集的社交网络影响最大化算法[J]. 电子与信息学报, 2016, 38(4): 795-802. doi: 10.11999/IEIT160019
XU Yuguang, PAN Jingzhi, XIE Huiyang. Minimum Vertex Covering and Feedback Vertex Set-based Algorithm for Influence Maximization in Social Network[J]. Journal of Electronics & Information Technology, 2016, 38(4): 795-802. doi: 10.11999/IEIT160019
Citation: XU Yuguang, PAN Jingzhi, XIE Huiyang. Minimum Vertex Covering and Feedback Vertex Set-based Algorithm for Influence Maximization in Social Network[J]. Journal of Electronics & Information Technology, 2016, 38(4): 795-802. doi: 10.11999/IEIT160019

基于最小点覆盖和反馈点集的社交网络影响最大化算法

doi: 10.11999/IEIT160019
基金项目: 

国家自然科学基金(61370193)

Minimum Vertex Covering and Feedback Vertex Set-based Algorithm for Influence Maximization in Social Network

Funds: 

The National Natural Science Foundation of China (61370193)

  • 摘要: 社交网络中的影响最大化问题是指在特定的传播模型下,如何寻找k个最具影响力的节点使得在该模型下社交网络中被影响的节点最多,信息传播的范围最广。该问题是一个优化问题,并且已经被证明是NP-难的。考虑到图的最小点覆盖和反馈点集中的顶点对图的连通性影响较大,该文提出一种基于最小点覆盖和反馈点集的社交网络影响最大化算法(Minimum Vertex Covering and Feedback Vertex Set, MVCFVS),并给出了具体的仿真实验和分析。实验结果表明,与最新的算法比较,该算法得到的节点集在多种模型下都具有优异的传播效果,例如在独立级联模型和加权级联模型中超过当前最好的算法,并且还具有更快的收敛速度。
  • WATTS D J and STROGATZ S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393(6684): 440-442.
    BARABASI A L and ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
    SAITO K, NAKANA R, and KIMURA M. Prediction of information diffusion probabilities for independent cascade model[J]. Lecture Notes in Computer Science, 2008, 5179: 67-75.
    TANG J, SUN J, and YANG Z. Social influence analysis in large-scale networks[C]. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2009: 807-816.
    GOYAL A, BONCHI F, and LASKHMANAN L. Learning influence probabilities in social networks[C]. Proceedings of the Third ACM International Conference on Web Search Data Mining, New York, USA, 2010: 241-250.
    WANG C, TANG J, SUN J, et al. Dynamic social influence analysis through time-dependent factor graphs[C]. Proceedings of the 2011 International Conference on Advances in Social Networks Analysis and Mining, Washington, DC, USA, 2011: 239-246.
    DOMIGOS P and RICHARDSON M. Mining the network value of customers[C]. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2001: 57-66.
    RICHARDSON M and DOMINGOS P. Mining knowledge- sharing sites for viral marketing[C]. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Alberta, Canada, 2002: 61-70.
    KEMPE D, KLEINBERG J, and TARDOS E. Influential nodes in a diffusion model for social networks[J]. International Colloquium on Automata, Languages and Programming, 2005, 32: 1127-1138.
    KEMPE D, KLEINBERG J, and TARDOS E. Maximizing the spread of influence in a social network[C]. Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, USA, 2003: 137-146.
    LESKOVEC J, KRAUSE A, GUESTRIN C, et al. Cost- effective outbreak detection in networks[C]. Proceedings of the Kdd 07 ACM SIGKDD International Conference on Knowledge Discovery and Data, Pittsburgh, PA, USA, 2007: 420-429.
    ZHOU C and GUO L. A note on influence maximization in social networks from local to global and beyond[C]. Proceedings of the 1th International Conference on Data Science (ICDS), Beijing, China, 2014: 27-28.
    ZHOU C, ZHANG P, GUO J, et al. An upper bound based greedy algorithm for mining top-k influential nodes in social networks [C]. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data, Seoul, Korea, 2014: 421-422.
    CHENG S, SHEN H, HUANG J, et al. IMRank: influence maximization via finding self-consistent ranking[C]. Proceedings of the 37th International ACM SIGIR Conference on Research Development in Information Retrieval?(SIGIR '14), New York, NY, USA, 2014: 475-484.
    CHEN W, WANG Y, and YANG S. Efficient influence maximization in social networks[C]. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 2009: 199-208.
    JIANG Q, SONG G, CONG G, et al. Simulated annealing based influence maximization in social networks[C]. Proceedings of the 25th AAAI Conference on Artificial Intelligence, San Francisco, California, USA, 2011: 127-132.
    ZOU F, ZHANG Z, and WU W. Latency-bounded minimum influential node selection in social networks[C]. Proceedings of the Wireless Algorithms, Systems, and Applications, 4th International Conference, Boston, MA, USA, 2009: 519-526.
    ZOU F, WILLSON J, ZHANG Z, et al. Fast information propagation in social networks[J]. Discrete Mathematics Algorithms Applications, 2010, 2(1): 125-141.
    COHEN E, DELLING D, PAJOR T, et al. Sketch-based influence maximization and computation: scaling up with guarantees[C]. Proceedings of Conference on Information and Knowledge Management, CIKM, Shanghai, China, 2014: 629-638.
    JIANG F, JIN S, WU Y, et al. A uniform framework for community detection via influence maximization in social networks[C]. IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Beijing, China, 2014: 27-32.
    CAO J, DAN D, XU S, et al. A k-core based algorithm for influence maximization in social networks[J]. Chinese Journal of Computers, 2015, 38(2): 238-248.
    LUCIER B, OREN J, and SINGER Y. Singer influence at scale: distributed computation of complex contagion in networks[C]. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 2015: 735-744.
    GOLDENBERG J, LIBAI B, and MULLER E. Talk of the network: a complex systems look at the underlying process of word-of-mouth [J]. Marketing Letters, 2001, 12(3): 211-223.
    KARP R M. Reducibility among Combinatorial Problems, Complexity of Computer Computations[M]. New York, USA, Plenum Press, 1972: 85-103.
    SCHULZ A. Correctness-proof of a greedy-algorithm for minimum vertex cover of a tree[OL]. http.//cs.stakexchange. com, 2013.
    LESKOVEC J, KLEINBERG J, and FALOUTSOS C. Graph evolution: densification and shrink diameters[J]. ACM Transactions on Knowledge Discovery from Data, 2007, 1(1): 1-41.
    LESKOVEC J, LANG K, DASGUPTA A, et al. Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters[J]. Internet Mathematics, 2009, 6(1): 29-123.
    MCAULEY J and LESKOVEC J. Learning to discover social circles in ego networks[C]. Proceedings of the 26th Annal Conference on Information Processing Systems, Lake Tahoe, NeVada, USA, 2012: 539-547.
  • 加载中
计量
  • 文章访问数:  1560
  • HTML全文浏览量:  201
  • PDF下载量:  777
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-05
  • 修回日期:  2016-02-26
  • 刊出日期:  2016-04-19

目录

    /

    返回文章
    返回