一种小波系数模型在图像噪声参数估计中的应用
On the Usage of a Wavelet Coefficient Model in Noise Variance Estimation of Image
-
摘要: 在小波图像处理中,通常利用HH子带来估计高斯白噪声方差,目前流行的估计方法是由Donoho和Johnstone提出的(简称DJ法),但是该方法给出的估计值通常都偏大。针对这一点,该文将他们的方法结合双随机小波系数模型,提出了一种新的、递归的方差估计方法。在已由Donoho的方法获得噪声方差估计的粗略估计的情况下,新方法利用统计学理论将HH子带中的信号滤除从而得到更接近于纯噪声的HH子带,然后利用这一新的HH子带来估计噪声的方差。结合EM参数估计方法,该方法还可以实现非高斯噪声参数的估计,实验表明新方法同Donoho法相比有很大的改善。
-
关键词:
- 系数模型; EM算法; 小波变换
Abstract: During wavelet image processing, the variance of Gaussian white noise is usually estimated in the finest HH subband. A popular method, proposed by Donoho and Johnstone, is often found to provide too large an estimate. To tackle this problem, this paper presents a new method. The new method takes the rude estimate from Donohos method as the starting point, and then a subband more dominated by noise is produced with the signal filtered out by a filter derived from statistics theory and a newly-proposed coefRcient model, the doubly stochastic process. Thus a finer estimate is possible by using Donohos method on the filtered HH subband. Through employing EM algorithm, the new method can he straightly extended to the case of non-Gaussian noise. Experimental results show that the new method can improve the estimate quite much when compared to Donohos method. -
Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage. Biometrika, 1994,14(6): 425-455.[2]林哲民等.在小波域中进行图像噪声方差估计的EM方法.红外与毫米波学报,2001,20(6):199-202.[3]Mihcak M K, Kozintsev I, Ramchandran K, et al.. Low-complexity image denoising based on statistical modeling of wavelet coefficients[J].IEEE Signal Processing Letters.1999, 6(12):300-303[4]Vidakovic B, Lozoya C B. On time-dependent [J].wavelet denoising. IEEE Trans. on Signal Processing.1998, 46(9):2549-2551[5]Huber P J. Robust Statistical Procedures. Philadelphia: Saciety for Industrial and Applied Mathematics, 1977: 1-3.[6]Middleton D. Statistical-physical models of urban radio-noise environments-Part I: Foundations[J].IEEE Trans. on Electromagnetic Compatibility.1972, EMC-14(1):38-56[7]Rissanen J. Stochastic Complexity in Statistical Inquiry. Singapore: World Scientific, 1998: 177-178.[8]Jiecheng Xie.[J].Dali Zhang, Wenli Xu. Wavelet denoising in non-Gaussian noise using MDL principle, Proc. of WCICA02, Shanghai, China.2002,:-
计量
- 文章访问数: 2149
- HTML全文浏览量: 118
- PDF下载量: 852
- 被引次数: 0