线性约束条件下任意凸函数的神经网络优化模型
A NEURAL NETWORK MODEL FOR THE OPTIMIZATIN OF ARBITRARY CONVEX FUNCTIONS WITH LINEAR CONSTRAINTS
-
摘要: 该文提出了线性约束条件下任意凸函数的神经网络优化模型,所构造的能量函数的平衡点即为原问题的最优解,克服了传统的神经网络优化方法所存在的问题,网络是全局稳定的,并能收敛到最优点,计算机仿真结果证明了本文方法的有效性。Abstract: This article presents a neural network model for the optimization of arbitrary convex functions with linear constraints. The equilibrium point of the energy function constructed is the optima] solution of the original problem. The problems, which would arise in conventional neural network optimization methods, are overcome. The neural model is globally stable and can converge to the optimal point. The computer simulation results verify the effectiveness of the method.
-
S. Haykin, Adaptive Filter Theory, 3rd ed. NJ: Prentice-Hall, 1996, Chapter 5.[2]J.B. Schodorf, D. B. Williams, A constrained optimization approach to multiuser detection, IEEE Trans. on SP, 1997, SP-45(1), 258-262.[3]宋荣方,毕光国,CDMA系统中时空综合干扰抑制的约束优化模型及其神经网络实现,电子学报,2001,29(4),475-478[4]阚超,基于神经网络的电信网DNHR算法及实现DNHR的有关协议,[硕士论文],南京,南京邮电学院,1991.[5]D.D. Tank, J. J. Hopfield, Simple neural optimization networks: An A/D converter, signaldecision and a linear programming, IEEE Trans. on CAS, 1986, 33(5), 533-541.[6]M.P. Kenney, L. O. Chua, Neural network for nonlinear programming, IEEE Trans. on CAS,1988, 35(5), 554-562.[7]A. Rodrguez, et al., Nonlinear switched-capacitor neural network for optimization problems, IEEETrans. on CAS, 1990, 37(3), 384-397.[8]陈开明,非线性规划,上海,复旦大学出版社,199l,第2章.[9]宋荣方,毕光国,线性约束凸规划神经网络新模型,信号处理,2001,17(2),104-109. -
计量
- 文章访问数: 2504
- HTML全文浏览量: 140
- PDF下载量: 619
- 被引次数: 0
下载: