一种基于小波多尺度边缘检测的图像融合算法
Multiscale Edge Detection Image Fusion Algorithm Using Wavelet Transform
-
摘要: 该文提出了一种新的基于多尺度边缘检测的小波图像融合方法,是一种利用图像边缘特征的小波图像融合方法,融合过程利用了图像的多尺度边缘信息。为了更好地保持图像的边缘,该文在图像融合过程中将图像去噪与边缘检测相结合。提出了一种物理意义明确的小波最佳分解层数的确定方法。利用统计分析的评判准则,如熵、标准偏差等,评价二维多聚焦图像不同小波分解层的融合效果,表明该方法提高了图像的熵和标准偏差的值,算法效果良好。Abstract: A novel image fusion algorithm using wavelet transform multiscale edges detection is proposed in this paper. This wavelet analysis image fusion method is feature-based. The source images are fused using their multiscale edges information. In order to preserve fusion image edges better, the denoising and edges detection combined are statistical parameters is used to evaluate multifocus image fusion performance. The technique determining optimal decomposition level has explicit physical meaning in this paper. Comparing source images entropy with fusion image entropy at the same decomposition level, if arbitrary source image entropy is larger than the fusion image entropy, it is not neccesary to make next level decomposition. Experimental results demonstrate the effectiveness of the algorithm which increases entropy and standard deviation of fusion image.
-
何友,王国宏,陆大,彭应宁.多传感器信息融合与应用.北京:电子工业出版社,2000,第1章.[2]Hall D L, Llinas J. A introduction to multisensor data fusion[J].Proc. IEEE.1997, 85(1):6-[3]Li H, Manjunath B S, Mitra S K. Multisensor image fusion using the wavelet transform[J].Graphical Models and Image Processing.1995, 57(3):235-[4]Zhang Z, Blum R S. A categorization of multiscaledecomposition -based image fusion schemes with a performance study for a digital camera application[J].Proc. IEEE.1999, 87(8):1315-[5]Mallat S G, Zhong S F. Characterization of signals from multiscale edges. IEEE Trans. on PAMI, 1992, 14(7): 710 - 732.[6]Mallat S G. A Wavelet Tour of Signal Processing. San Diego:Academic Press, 1998: Chapter 6.
计量
- 文章访问数: 2752
- HTML全文浏览量: 119
- PDF下载量: 932
- 被引次数: 0