三维非均匀介质成像问题的区域分解方法
Domain decomposition method applied to three-dimensional inhomogeneous media imaging
-
摘要: 在利用数值方法分析非均匀介质问题时,容易生成大型系数矩阵,从而在求解时常常造成计算机内存不足或者计算时间过长。该文利用区域分解方法对三维非均匀介质成像问题进行分析,通过将求解区域划分为几个子区域,在子区域上以迭代求解子问题的方式解决以上问题。文中给出的迭代收敛速度曲线证明区域分解算法的收敛速度很快。该文对一些复杂的非均匀介质问题给出了模拟测量成像的结果。Abstract: When numerical methods are used to solve the inhomogeneous media problems, generally, the large coefficient matrixes are generated. This results in the shortage of memory or very long computing time. In this paper, the domain decomposition method is applied to three-dimensional inhomogeneous media imaging. By means of dividing the domain into a few subdomains and iteratively solving the small problems on these subdomains, the large problem can be efficiently solved. The iterative curve shows the fast convergence rate. The imaging results of some complex inhomogeneous media problems are given in this paper.
-
P.P. Silvester, R. L. Ferrari, Finite Elements for Electrical Engineers, Cambridge, Cambridge University Press, 1990, chapter 9. [2]金建铭著(美),王建国译,电磁场有限元方法,西安,西安电子科技大学出版社,1998,第五章.[2]高本庆,时域有限差分法,北京,国防工业出版社,1995,第二章.[3]J.H. Bramble, J. E. Pasciak, A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring I, Mathematics of Computation, 1986, 46(174), 361-369.[4]吕涛,石济民,林振宝,区域分解算法--偏微分方程数值解新技术,北京,科学出版社,1997,205-223.[5]陈爱新,聂在平,二维位场重叠型区域分解方法,电波科学学报,1998,13(4),382-387.[6]陈爱新,聂在平,二维位场非重叠区域分解方法,电波科学学报,1999,14(增),244-247.
计量
- 文章访问数: 2122
- HTML全文浏览量: 137
- PDF下载量: 450
- 被引次数: 0