归一化自适应预测矢量量化算法压缩SAR原始数据
Compression of SAR Raw Data with Normalized Adaptive Predictive Vector Quantization
-
摘要: 该文提出归一化自适应预测矢量量化(NAPVQ)算法压缩SAR原始数据。NAPVQ算法先采用矢量线性预测器对输入矢量进行预测,再对原矢量与预测矢量之间的残差矢量进行矢量量化。该算法可视为差分脉冲调制在矢量量化中的拓展,其性能优于块自适应量化(BAVQ)算法以及归一化预测自适应量化(NPAQ)算法。对算法复杂度的进一步分析表明,NAPVQ算法能获得复杂度和性能之间比较合理的折衷,具有实用价值。Abstract: This paper presents a new SAR raw data compression algorithm named Normalized Adaptive Predictive Vector Quantization (NAPVQ). The normalized SAR raw data are firstly processed with vector linear predictor, and then the error vectors are compressed with vector quantizer. Regarded as an extension of the differential pulse code modulation in the vector quantization, the NAPVQ achieves a better performance gain than the Block Adaptive Vector Quantization (BAVQ) and the Normalized Predictive Adaptive Quantization (NPAQ). With the analyses of algorithm complexity, the proposed algorithm shows a good performance/complexity trade-off and accommodates the requirement in engineering applications.
-
Kwok R. Adaptive quantization of Magellan SAR data, IEEE Trans[J].on Geoscience and Remote Sensing.1989, 27(4):375-[2]Enrico M, Olmo G Lossy predictive coding of SAR raw data. IEEE Trans[J].on Geoscience and Remote Sensing.2003, 41(3):977-[3]Moreira A , Blaeser F. Fusion of block adaptive and vector quantization for efficient SAR data compression. IGARSS, Tokyo, 1993: 1583 - 1585.[4]杨云志, 黄顺吉, 王建国. 矢量量化在SAR原始数据压缩中应用. 系统工程与电子技术, 2002, 24(6): 42-44.[5]Owens J W, Marcellin M W, Hunt B R. Compression of synthetic aperture radar video phase history data using trellis-coded quantization techniques[J].IEEE Trans. on Geoscience and Remote Sensing.1999,37(2):1080-[6]Benz U, Strodl K, Moreia A. A comparison of several algorithms for SAR raw data compression[J].IEEE Trans. on Geoscience and Remote Sensing.1995,33(5):1266-[7][71 Pascazio V, Schirinzi G SAR raw data compression by subband coding. IEEE Trans. on Geoscience and Remote Sensing, 2003, 4l(2): 964 - 976.[8]孙圣和, 陆哲明. 矢量量化技术及应用. 北京: 科学出版社, 2002: 116-136.[9][91 Jayant N S, Noll P. Digital Coding of Waveforms, NJ: Prentice-Hall, 1984,40 - 90.[10]Linde Y, Buzo A, Gray R. An algorithm for vector quantization design[J].IEEE Trans. on Communications.1980,28(1):84-[11]巍钟铨. 合成孔径雷达卫星. 北京: 科学出版社, 2001: 202-210. 期刊类型引用(5)
1. 刘毅,邱宝刚. 5G高频应用场景研究. 电信工程技术与标准化. 2024(10): 68-75 . 百度学术
2. 纪汪勇,张治中,邓炳光. 新型动态簇非平稳MIMO信道模型与信道特性分析. 电讯技术. 2021(11): 1431-1437 . 百度学术
3. 张存侠. 基于人工噪声的多用途MIMO系统安全算法. 微型电脑应用. 2020(04): 143-145 . 百度学术
4. 袁怡圃,江丽. 大规模MIMO系统低复杂度1位量化预编码算法. 泉州师范学院学报. 2020(02): 66-72 . 百度学术
5. 陶成,郑文博,李泳志,刘留. 基于低精度量化的大规模MIMO-OFDM系统可达速率的研究. 电子与信息学报. 2018(10): 2294-2300 . 本站查看
其他类型引用(5)
-
计量
- 文章访问数: 2541
- HTML全文浏览量: 134
- PDF下载量: 761
- 被引次数: 10