快速傅氏变换的一个改进算法
AN IMPROVED ALGORITHM FOR FFT
-
摘要: 正 我们知道,对于N=2点的复数离散序列,快速算法能以(N/2)次复数乘法实现其傅氏变换,比N2次复数乘法的实现方法,运算次数大为减少,速度大为提高。这对数值计算和数字信号处理技术都有重大的意义。快速傅氏变换(FFT)出现虽仅有15年,但已有了很大的发展,在实践中已得到广
-
关键词:
Abstract: An improved algorithm for FFT is proposed. The Fourier transforms of a complex discrete sequence with N = 2r points are performed by the operation of (-3) N/2 times of multiplication. The speed of the algorithm is faster than the conventional FFT. The speed up ratio is about 3/(-3). -
J. Cooley and J. Tukey, Math. Comput.,19(1965), 297.[2]S. Winograd, Proc. Nat, Acad. Sci. U.S.A.,73(1976), 100.[3]H. F. Silverman, IEEE Trans. on Assp,ASSP-25(1977), 242.[4]V. P. Kolba and T. W. Parks, IEEE Trans.on Assp, ASSP-25(1977), 281.[5]田中公男、青山友纪,情报处理,19(1978), 1091.
计量
- 文章访问数: 1930
- HTML全文浏览量: 82
- PDF下载量: 355
- 被引次数: 0