一种基于CSA的模糊聚类新算法
A CSA-Based New Fuzzy Clustering Algorithm
-
摘要: 在聚类分析中,模糊k均值算法是目前应用最为广泛的方法之一,然而该算法对初始化敏感,容易陷入局部极值点。为此,该文提出一种基于克隆选择的模糊聚类新算法以实现全局优化处理。在新算法中,由于克隆算子能够将进化搜索与随机搜索、全局搜索和局部搜索相结合,因而通过对候选解进行克隆算子操作,能够快速得到全局最优解。用人造数据和IRIS实际数据所做测试结果表明了新算法的有效性。Abstract: In cluster analysis, Fuzzy K-Means (FKM) algorithm is one of the most widely used methods. However, FKM algorithm is much more sensitive to the initialization, and easy to fall into local optimum. For this purpose, this paper presents a clonal selection based new algorithm for fuzzy clustering analysis, for global optimization. Since the clonal operator can combine the evolutionary search and random search, and incorporate the global search with local search, by the clonal operation on candidate solutions, the new algorithm can quickly obtain the global optimum. The experimental results with synthetic data and IRIS real data illustrate the effectiveness of the new algorithm.
-
何清.模糊聚类分析理论与应用研究进展.模糊系统与数学,1998,12(2):89-94.[2]高新波.模糊聚类算法的优化及应用研究.[博士论文],西安:西安电子科技大学,1999年.[3]De Castro L N.[J].Von Zuben F J. The clonal selection algorithm with engineering applications. Proc. of GECCO00, Workshop on Artificial Immune Systems and Their Applications, Las Vegas,USA.2000,:-[4]Kim Jungwon, Bentley P J. Towards an artificial immune system for network intrusion detection: An investigation of clonal selection with a negative selection operator. Proc. of the 2001Congress on Evolutionary Computation, Seoul, Korea, 2001, 2:1244- 1252.[5]Du Haifeng, Jiao Licheng. Clonal operator and antibody clonal algorithm. Proc. of the First International Conference on Machine Learning and Cybernetics, Beijing, 4 - 5 Novermber, 2002:506-510.[6]周光炎.免疫学原理.上海:上海科学技术出版社,2000:31-32.
计量
- 文章访问数: 2293
- HTML全文浏览量: 90
- PDF下载量: 775
- 被引次数: 0