高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解三维问题的区域分解时域有限差分方法

许锋 洪伟 周后型

许锋, 洪伟, 周后型. 求解三维问题的区域分解时域有限差分方法[J]. 电子与信息学报, 2003, 25(8): 1114-1119.
引用本文: 许锋, 洪伟, 周后型. 求解三维问题的区域分解时域有限差分方法[J]. 电子与信息学报, 2003, 25(8): 1114-1119.
Xu Feng, Hong Wei, Zhou Houxing . The domain decomposition FDTD algorithm (DD-FDTD) for three-dimensional complex problems[J]. Journal of Electronics & Information Technology, 2003, 25(8): 1114-1119.
Citation: Xu Feng, Hong Wei, Zhou Houxing . The domain decomposition FDTD algorithm (DD-FDTD) for three-dimensional complex problems[J]. Journal of Electronics & Information Technology, 2003, 25(8): 1114-1119.

求解三维问题的区域分解时域有限差分方法

The domain decomposition FDTD algorithm (DD-FDTD) for three-dimensional complex problems

  • 摘要: 该文提出一种用于三维复杂问题的区域分解时域有限差分算法(DD-FDTD)。依据待解三维复杂问题的特点,将其分解为几个子区域。每个子域中的问题相对简单,可采用适合于该区域的共形网格进行划分计算,通过插值再修正误差的办法,把各个子区域综合起来,获得原问题的解。这样,应用区域分解的思想,简化了复杂的问题。修正误差的方法,使本算法得以实现并大幅度提高了计算精度。采用本算法对三维口径天线问题进行了分析计算并与实测数据进行了比对,验证了算法的正确性。
  • K.S. Yee, Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media, IEEE Trans. on Antennas Propagat., 1966, AP-14(5), 302-307.[2]R. Holland, Finite-difference solutions of Maxwells equations in generalized nonorthogonal coordinates, IEEE Trans. on Nucl. Sci., 1983, NS-30(6), 4589-4591.[3]J.F. Lee, R. Palandech, R. Mittra, Modeling three-dimensional discontinuities in waveguides using nonorthogonal FDTD algorithm, IEEE Trans. on Microwave Theory Tech., 1992, MTT-40(2), 346-352.[4]T.G. Jurgens, A. Talflove, K. Umashanker, T. G. Moore, Finite-difference time-domain modeling of curved surfaces, IEEE Trans. on Antennas Propagat., 1992, AP-40(4), 357-366.[5]J. Fang, J. Ren, A locally conformed finite-difference time-domain algorithm of modeling arbitrary shape planar metal strips, IEEE Trans. on Microwave Theory Tech., 1993, MTT-41(5), 830-838.[6]S.S. Zivanovic, K. S. Yee, K. K. Mei, A subgridding method for the time-domain finite-difference method to solve Maxwells equations, IEEE Trans. on Microwave Theory and Tech., 1991, MTT-39(3), 471-479.[7]K.S. Yee, J. S. Chen, A. H. Chang, Conformal Finite-Difference Time-Domain (FDTD) with overlapping grid, IEEE Trans. on Antennas Propagat., 1992, AP-40(9), 1068-1075.[8]R.B. Wu, T. Itoh, Hybrid finite-difference time-domain modeling of curved surfaces using tetrahedral edge elements, IEEE Trans. on Antennas Propagat., 1997, AP-45(8), 1302-1309.[9]D. Koh, H. Lee, T. Itoh, A hybrid full-wave analysis of via-hole grounds using finite-difference and finite-element time-domain methods, IEEE Trans. on Microwave Theory and Tech., 1997,MTT-45(12), 2217-2222.[10]许锋,洪伟,童创明,区域分解时域有限差分方法(DD-FDTD)及其在散射问题中的应用,电子学报,2001,29(12),1642-1645.[11]K. K. Mei, J. Fang, Superabsorption - A nethod to improve absorbing boundary conditions,IEEE Trans. on Antennas Propagat., 1992, AP-40(9), 1001-1010.[12]Xiaolei Zhang, K. K. Mei, Time-Domain finite difference approach to the calculation of the frequency-dependent characteristics of microstrip discontinuities, IEEE Trans. on Microwave Theory and Tech., 1988, MTT-36(12), 1775-1787.[13]P. Mezzanotte, L. Roselli, R. Sorrentino, A simple way to model curved metal boundaries in FDTD algorithm avoiding staircase approximation, IEEE Microwave and Guided Wave Letters,1995, 5(8), 267-269.
  • 加载中
计量
  • 文章访问数:  2698
  • HTML全文浏览量:  123
  • PDF下载量:  536
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-03-15
  • 修回日期:  2002-09-23
  • 刊出日期:  2003-08-19

目录

    /

    返回文章
    返回