一种基于正交多小波的自适应均衡算法
A new adaptive equalization algorithm based on orthogonal multiwavelets
-
摘要: 该文提出了用正交多小波来表示均衡器,由于多小波可同时具有正交性、紧支性和线性相位等特点,因此经多小波变换后所得到的信号相关阵的稀疏化估计与单小波变换相比非零元素较少,边界效应减小,基于此,文中给出了正交多小波变换域的一种Newton-LMS类自适应均衡算法,其计算复杂性可通过有预处理的共轭梯度法进一步降低为O(N log N),仿真结果表明了该算法收敛速度较快,且易于实时实现。
-
关键词:
- 自适应均衡; 正交多小波; 小波变换
Abstract: A new equalizer represented by a set of orthogonal multiwavelets is presented. Since multiwavelets can be orthogonal, compactly supported and linear phase, the multiwavelets transformed correlation matrices have less non-zero elements and smaller boundary effects than that of wavelet. So, a new multiwavelet transform domain newton-LMS adaptive equalization algorithm is described, and its complexity is O(N log N) by using the preconditioned conjugate gradient algorithm. Simulation shows its convergence speed is faster and its realization is easier. -
N. Erdol, F. Basbug, Wavelet transform based adaptive filters: Analysis and new results, IEEE Trans. on SP., 1996, SP-44(9), 2163-2171.[2]S. Hosur, A. H. Tewfik, Wavelet transform domain adaptive filtering, IEEE Trans. on SP., 1997,SP-45(3), 617-630.[3]刘丰,程俊,王新梅,基于规范正交小波的自适应均衡器,电子科学学刊,1997,19(5),637-642.[4]I. Daubechies, Ten Lectures on Wavelets, Philadephia, SIAM, 1992.[5]Q. Jiang, Orthogonal multiwavelets with optimum time-frequency, IEEE Trans. on SP., 1998,SP-46(4), 830-844.[6]J. Lebrun, M. Vrtterli, Balanced multiwavelets theory and design, IEEE Trans. on SP., 1998,SP-46(4), 1119-1125.[7]B.K. Alpert, A class of bases in L2 for the sparse representation of integral operators, SIAM J.Math. Anal., 1993, 24(1), 246-262.[8]V. Strela, P. Heller, G. Strang, P. Topiwala, C. Heil, The application of multiwavelet filter banks to signal and image processing, IEEE Trans. on Image Proc., 1999, IP-8(4), 548-563.[9]徐树方,矩阵计算的理论与方法,北京,北京大学出版社,1995,162-168.
计量
- 文章访问数: 2067
- HTML全文浏览量: 101
- PDF下载量: 913
- 被引次数: 0