高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于小波变换和马尔可夫随机场的极化SAR图像自动分类

刘国庆 熊红 黄顺吉

刘国庆, 熊红, 黄顺吉. 基于小波变换和马尔可夫随机场的极化SAR图像自动分类[J]. 电子与信息学报, 2000, 22(3): 359-365.
引用本文: 刘国庆, 熊红, 黄顺吉. 基于小波变换和马尔可夫随机场的极化SAR图像自动分类[J]. 电子与信息学报, 2000, 22(3): 359-365.
Liu Guoqing, Xiong Hong, Huang Shunji. AUTOMATIC MULTIRESOLUTION CLASSIFICATION OF POLARIMETRIC SAR IMAGE WITH WAVELET TRANSFORM AND MARKOV RANDOM FIELD[J]. Journal of Electronics & Information Technology, 2000, 22(3): 359-365.
Citation: Liu Guoqing, Xiong Hong, Huang Shunji. AUTOMATIC MULTIRESOLUTION CLASSIFICATION OF POLARIMETRIC SAR IMAGE WITH WAVELET TRANSFORM AND MARKOV RANDOM FIELD[J]. Journal of Electronics & Information Technology, 2000, 22(3): 359-365.

基于小波变换和马尔可夫随机场的极化SAR图像自动分类

AUTOMATIC MULTIRESOLUTION CLASSIFICATION OF POLARIMETRIC SAR IMAGE WITH WAVELET TRANSFORM AND MARKOV RANDOM FIELD

  • 摘要: 本文提出一种对极化合成孔径雷达(SAR)图像进行自动多分辨率分类的方法。首先利用多视极化白化滤波(MPWF)抑制极化SAR图像的相干斑,得到反映地物辐射特征的纹理SAR图像,然后利用小波变换(WT)提取不同分辨率的纹理信息,在最低分辨率级利用Akaik信息准则(AIC)自动估计图像中的纹理类数,进而在各个分辨率级利用马尔可夫随机场(MRF)模型表征各像素间的空间关联信息,并分别利用最大似然(ML)方法和循环条件模式(ICM)进行自动的模型参数估计和最大后验概率(MAP)分类,最后应用NASA/JPL机载L波段极化SAR数据验证了本文所提分类方法的有效性和优越性。
  • Novak L M, Burl M C. Optimal speckle reduction in polarimetric SAR imagery[J].IEEE Trans. on Aerospace Electrical Systems.1990, 26(2):293-305[2]Guoqing Liu, Shunji Huang, Torre A, Rubertone F. The multi-look polarimetric whitening filter for speckle reduction in polarimetric SAR image .IEEE Trans. on Geoscience and Remote Sensing, 1998,363, 36(3) :1016-1020.[3]Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation .IEEE Trans. on Pattern Anal. and Machine Intell, 1989,117, 11(7) :674-693.[4]Daubechies I. The wavelet transform, time-frequency location and signal analysis .IEEE Trans. on Information Theory, 1990,365, 36(5) :961-1005.[5]Besag J. Spatial interaction and the statistical analysis of lattice system .J. Roy. Statist. Soc. B, 1974,362, 36(2) :192-236.[6]Besag J. On the statistical analysis of dirty data .J. Roy. Statist. Soc. B, 1986,483, 48(3) :259-302.[7]Bouman C, Liu B. Multiple resolution segmentation of texture images .IEEE Trans. on Pattern Anal. and Machine Intell, 1991,132, 13(2) :99-113.[8]Geman S, Geman D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images .IEEE Trans. on Pattern Anal. and Machine Intell, 1984,66, 6(6) :721-741.[9]Akaik H. A new look at the statistical model identification.IEEE Trans. ou Automat .Control, 1974,196, 19(6) :716-723.[10]Zhang J, Modestino J W, Langan D A. Maximum-likelihood parameter estimation for unsupervised stochastic model-based image segmentation .IEEE Trans. on Image Processing, 1994,34, 3(4) :404-420.[11]Ulaby F T, Elachi C. Radar Polarimetry for Geoscience Applications, Norwood, MA: Artech House Inc, 1990, Chapter 2, 24-25.[12]Srivastava S. On the complex Wishart distribution .Annals of Mathematical Statistics, 1965,362, 36(2) :313-315.[13]Guoqing Liu.[J].Shunji Huang, Torre A, Rubertone F. DuberOptimal multi-look polarimetric speckle reduction and its effect on terrain classification, in Proc. of IGARSS96, Lincoln, NE, USA: July.1515,1996:-
  • 加载中
计量
  • 文章访问数:  2523
  • HTML全文浏览量:  91
  • PDF下载量:  433
  • 被引次数: 0
出版历程
  • 收稿日期:  1998-10-16
  • 修回日期:  1999-05-22
  • 刊出日期:  2000-05-19

目录

    /

    返回文章
    返回