BP网络不平衡训练样本集的有效学习算法
AN EFFICIENT LEARNING ALGORITHM OF NONBALANCED TRAINING SET FOR BP NETWORK
-
摘要: 分析了BP网络标准反传学习算法对不平衡样本集训练速度慢的原因,研究了如何改进其学习算法来加速训练速度,并通过实验对上述理论进行验证。
-
关键词:
- 神经网络; 不平衡训练集
Abstract: This paper analyzes the reason for low convergence rate of BP network standard backpropagation algorithm to nonblanced training set, researches how to improve the learning algorithm in order to increase training speed, and through two experiments tests and verifies above theory. -
Anand R,et al. Efficient classification for multiclass problem using modular neural networks. IEEE Trans. on Neural Networks, 1995, NN-6(1): 117-124.[2]Anand R, et al. An improved algorithm for neural networks classification of imbalanced training sets. IEEE Trans. on Neural Networks, 1993, NN-4(6): 962-969.[3]Waibel A, et al. Modularity and scaling in large phonemic neural networks. IEEE Trans. on ASSP, 1989, ASSP-37(12): 1888-1898.[4]Waibel A, et al. Phoneme recognition using time-delay neural networks. IEEE Trans. on ASSP, 1989, ASSP-37(3): 328-339.
计量
- 文章访问数: 2186
- HTML全文浏览量: 104
- PDF下载量: 402
- 被引次数: 0