求解线性方程组的迭代法的统一二维迭代法
A UNIFIED APPROACH FOR SOL VING LINE AR EQUATIONSTWO-DIMENSIONAL ITERATIVE METHOD
-
摘要: 求解线性方程组Ax=b的迭代法有其独特的实用意义,但由于其收敛的问题而受到限制。本文导出了常用的雅各比法、高斯-塞德尔法和逐次超松弛法等的统一方法,称之为二维迭代法,并由此得到了从新的角度改进迭代法的收敛性和收敛速度的途径。理论分析和数值计算都表明该方法优于常用的迭代法。此方法在解大规模电路中有用,例如用于VLSI的模拟。
-
关键词:
Abstract: In this paper, a unified approach of iterative methods, such as Jacobi method, Gauss-Seidel method, SOR method, etc., for solving linear equations is discussed and studied. For the reason stated in this paper, this approach is called 2-dimensional iterative method. The convergence and the rate of convergence of iteration process are improved by using this new approach. The theoretical analysis and the computing results demonstrate that this approach has many advantages over the generally used iterative methods. it is useful in solving the large scale electric circuits, such as VLSI. -
Д.К. 法捷耶夫,B.H.法捷耶娃著,刘克武等译,线性代数计算方法,上海科技出版社,1965年,第231-291页.[2]I. S. Duff, Proc. IEEE, 65(1977), 500-35.[3]G. D. Hachtel, A. L. Sangiovanni-Vincentilli, ibid., 69(1981), 1264-80.[4]S. L. Richter and R. A. Decarlo, IEEE Trans. on CAS, CAS-30(1983), 347-52.[5]谷获隆嗣,通信学会论文志,J65A(1982), 802.[6]张学铭等,微分方程稳定性理论讲义,山东人民出版社,1958年,第54-113页.[7]韩天敏,应用数学学报,1977年,第3期,第28页.[8]L. W. Nagel, Spice-II, A Computer Program to Simulate Semiconductor Circuits, Memorandum No. ERL, M 520, College of Engineering, University of Calfornia Berkeley, 1975.
计量
- 文章访问数: 2248
- HTML全文浏览量: 126
- PDF下载量: 480
- 被引次数: 0