电磁后向散射波数据的小波包变换分析
WAVELET PACKET ANALYSIS OF ELECTROMAGNETIC BACKSCATTERING DATA
-
摘要: 本文采用小波包变换方法对电磁散射波数据进行了分析,表明小波包变换的自适应多分辨分析性质非常适合电磁波的多尺度特征分析。特别地,在计算速度和分析效果等方面都优于H。Kim,J。Ling(1992,1993)所采用的连续小波变换技术,从而丰富和发展了电磁波的时频分析手段,同时也为小波技术在瞬变电磁场的进一步应用提供了新途径。Abstract: An analysis of electromagnetic backscattering data using Wavelet Packet Transfrom (WPT) is presented. Due to its adaptive multiresolution property. WPT is well adapted to resolve the multiscale features of backscattering data. In particular, with respect to the consequence of analysis and computational complexity, WPT results in a better representation of backscattering data over Continuous Wavelet Tramsform (CWT) which was employed by II. Kim, H. Ling (1992, 1993). So WPT method makes a contribution to the time-frequency analysis of the electromagnetic wave. Furthermore, it is shown that WPT method offers a new approach for the further application of wavelet to instantaneous magnetic field.
-
Flandrin P, et al. IEEE Trans. on ASSP, 1990, ASSP-38(2): 350-352.[2]Kim H, Ling H. IEEE Trans. on AP., 1993, AP-41(2): 200 207.[3]Ling H, Kim H, IEEE Microwave and Guided Wave Letters, 1992, 2(4): 140-192.[4]Kim 13. Liug H, Electron. Lett., 1992, 28(3): 179-280.[5]Grossmann A, et al. Readling and Understanding Continous Wavelet Transforms, in Wavelets, Time-[6]Fretlueny Methods and Phase Spatce.J. Conbes, et al eds., Proceedings of the International Conference,Marseille,France: Springer Velag, 1987, 2-20.[7]Wiclcerhauser M V. Lect ores on Wavelet Packet Algorithms, Preprint,Washington University, St. Louis, Missori: 1991.[8]Coifman N, Wickerhauser M V. IEEE Trans. on IT, 1992, IT-38(1): 713-718.[9][8][10]Daubechies I. Common[J].Pure and Appl. Math.1988, 41:909-996
计量
- 文章访问数: 2099
- HTML全文浏览量: 147
- PDF下载量: 401
- 被引次数: 0