产生全符号网络函数的Coates流图法
COATES GRAPH APPROACH FOR GENERATING SYMBOLIC NETWORK FUNCTION
-
摘要: 本文引入符号码数组、常数数组和记数数组,前二数组用来描述增广矩阵的元素表达式,建立节点导纳方程,后一数组用来写出入度矩阵,然后根据入度矩阵产生Coates流图的全部1-因子增益。在展开行列式时利用符号代码合并同类项,消去相消项,从而得到无相消项的全符号网络函数。Abstract: Symbolic code matrix, constant matrix and count matrix are defined. The first two matrixes are used to describe the elemental expressions of augmentation matrix and the node admittance equation is thus obtained. The third matrix is used to obtain the incoming degree matrix, and all the 1-factor gains of the coates graph are given according to the matrix. Using the code data, the determinant is expanded and all the same items in the expansion are merged. Thus the symbolic network function in which no term concellation occurs is generated.
-
P. M. Lin, G. E. Alderson, SNAP-A Computer Program for Generating Symbolic Nework Function, School Elec. Eng., Purdue Univ., Lafaytte, Ind., Rep. TR-EE70-16, Aug. 1970.[2]张惠廉,庄镇泉,电子线路的计算机辅助设计,人民教育出版社,1979,下册,244-259.[3]W. K. Chen, Applied Graph Theory, North-Holland, 1976, p. 144.[4]P. R. Adby, Applied Circuit Theory, Matrix and Computer Methods, Ellis Horwod Limited, 1980, Chap.4.[5]陈树柏,左恺,张良震, 网络图论及其应用,科学出版社,1982,第5章.
计量
- 文章访问数: 2313
- HTML全文浏览量: 127
- PDF下载量: 549
- 被引次数: 0