线性有源网络的完全有向树分析法
COMPLETE DIRECTED TREES ANALYSIS METHOD FOR LINEAR ACTIVE NETWORKS
-
摘要: 本文提出了正(负)根完全有向树和正(负)根完全有向k树的概念和线性有源网络的正(负)根完全有向树分沂法。这个方法是完全树法与有向树法的统一。它没有符号问题与对消项问题。
-
关键词:
Abstract: The concepts of positive (negative) root complete directed trees and positive (negative) root complete directed k-trees and a positive (negative) root complete directed trees analysis method for linear active networks are presented. This method is the unification of complete trees method and directed trees method. It does not involve any sign problem and cancellation terms problem. -
W. Mayeda, Graph Theory, John Wiley and Sons, Inc., 1972, Ch. 8.[2]S. P. Chan, Introductory Topological Analysis of Electrical Networks, New York: Holt, Rinehart and Winston, 1969, Ch. 8.[3]W. K. Chen, Applied Graph Theory, Amsterdam: North-Holland, 1976, Ch. 4[4]陈树柏主编,网络图论及其应用,科学出版社,1982,第七章.[5]黄汝激,有源网络不定导纳矩阵一般k阶余因式的拓扑表达式,电子科学学刊,2(1985),81.[6]W K. Chen, IEEE Trans. on CT, CT-19 (1972), 241.[7]黄汝激,Chan-Mai,图定理的改进,北京钢铁学院学报,1982年,第2期,第83页.[8]W .Mayeda, S. L. Hakimi,W.K. Chen and N. Deo, IEEE Trans. on CT, CT-15 (1968), 101.
计量
- 文章访问数: 1767
- HTML全文浏览量: 160
- PDF下载量: 394
- 被引次数: 0