非线性参数估计中的观测集预处理技术
Measurements set preprocessing for estimation of nonlinear model parameter
-
摘要: 非线性参数估计模型中,若系统的可观测度较弱,被估计参数相互耦合,那么参数的估计精度不仅与随机观测噪声有关,与系统的可观测度也有着密切的关系。该文提出一种观测集预处理方法,依据可观测度指标对观测数据进行筛选,然后利用筛选集对参数进行估计。以雷达的系统误差估计为例,使用筛选集估计雷达的系统误差,比直接使用原观测集估计所得结果更为精确。Abstract: Estimation accuracy of nonlinear parameter not only relates to the random measurement noise, but also relates to the system observability, provided that system observability is very low and the parameters intermix. Aiming at this, a preprocessing method based on measurements selection is proposed to strengthen the system observability. As an example, the preprocessed subset is used to estimate the system errors of radar. It is shown that this method can improve the estimation accuracy.
-
M.B.Douglas等著,韦博成等译,非线性回归分析及其应用,北京,中国统计出版社,1997,第二章.[2]Yifeng Zhou, et al., A two-step extended Kalman filter fusion approach for misaligned sensors,Fusion 98 International Conf., 1998, 54-58.[3]孙仲康,周一字,何黎星,单多基地有源无源定位技术,北京,国防工业出版社,1996,199-202.[4]P.G.Ciarlet著,胡健伟译,矩阵数值分析与最优化,北京,高等教育出版社,1990,第二章.[5]Radar Surveillance in En-route Airspace and Major Terminal Areas, proposed EUROCONTROL standard document, EUROCONTROL, 1994.I. Jonsdottir, Integrity monitoring and estimation of systematic errors in radar data systems,[Master thesis], The University of Iceland, Systems Engineering Laboratory, 1994.
计量
- 文章访问数: 2348
- HTML全文浏览量: 237
- PDF下载量: 616
- 被引次数: 0