解不连续介质结构问题的积分方程法
THE INTEGRAL EQUATION METHOD FOR SOLVING PROBLEMS OF DISCONTINUOUS DIELECTRIC STRUCTURE
-
摘要: 本文讨论了用积分方程法处理不连续介质结构问题。先从模式匹配法出发,通过一些变换和推导,得到了相应的散射积分方程和传输积分方程。给出了传输积分方程存在解的充要条件。这个条件实际上就是这种介质结构的色散方程。作为例子,导出了一阶不连续介质结构的简洁解。
-
关键词:
- 介质波导; 积分方程法; 模式匹配法
Abstract: From the mode-matching method, by doing some transforms and derivations, the scattering and propagation integral equations for solving the problems of discontinuous dielectric structure are obtained. The necessary and sufficient condition for the existence of solution of propagating equations is given. It is really the dispersion equation of the dielectric structure. As an example, a succinct solution of one-step discontinuous dielectric structure is derived. -
K.Solbach, I. Wolff, IEEE Trans. on MTT, MTT-26(1978), 266-274.[2]R.Mittra, Yun-Li Hou, V. Jamnejad, IEEE Trans. on MTT, MTT-28(1980), 36-43.[3]Song-Tsuen, Peng, A.Oliner, IEEE Trans. on MTT, MTT-29(1981), 843-854.[4]Song-Tsuen, Peng, A.Oliner, IEEE Trans. on MTT, MTT-29(1981), 855-868.[5]R.Courant, D. Hilbert著,钱敏,郭敦仁译,数学物理方法,卷1,科学出版社,1981年,第261页..[6]R. F. Harrington,著,孟侃泽,正弦电磁场,上海科学技术出版社,1964年,第139页.[7]吴万春,微波毫米波与光集成电路的理论基础,西北电讯工程学院出版社,1985年,,第207-213页.
计量
- 文章访问数: 2075
- HTML全文浏览量: 110
- PDF下载量: 467
- 被引次数: 0