多小波分形调制理论及其性能分析
Fractal Modulation with Multiwavelets and Its Performance
-
摘要: 该文提出正交多小波分形调制理论,计算了理论功率谱密度和二进数据下的误码率。多小波分形调制在各尺度能够提供更多的子频带,为更多用户服务,具有更高的频带利用率。仿真了其在加性高斯信道、Rayleigh信道和多径信道下的误码率,并利用多小波周期自相关函数分析了系统抗多径干扰能力,更进一步,根据多小波周期自相关函数的过零点数对多小波函数进行正交时移重叠,提高了系统数据速率。Abstract: Fractal modulation based on multiwavelet is proposed and its power density spectrum is calculated and also its bit error ratio under binary data is calculated. Multiwavelet fractal modulation provides more sub-bands and holds more users at each scale and has much higher band efficiency than that with single wavelet. The bit error rate under additive white Gaussian noise channel, Rayleigh channel and multi-path channel is simulated. The systems anti-multi-path fading ability is analyzed by the periodic auto-correlation function of multiwavelets and wavelets. According to the number of the zero point of the periodic auto-correlation function, the capacity can be improved by orthogonal shift and overlapping in time domain.
-
Wornell G W. Communication over fractal channels. IEEE International Conference on Acoustics, Speech and Signal Processing, New York, 1991:19451948. .[2]Wornell G W, Oppenheim A V. Wavelet-based representations for a class of self-similar signals with application to fractal modulation[J].IEEE Trans. on Information Theory.1992, 38(2):785-[3]Ptasinski H S.[J].Fellman R D. Implementation and simulation of a fractal modulation communication system. IEEE Supercomm/In-tern ational Communications Conference94:Serving Humanity Though Communications, New York.1994,:-[4]阎晓红,刘贵忠, 刘峰. 分形信号的多小波基表示. 自然科学进展, 2004, 14(3): 354.358.[5]阎晓红, 刘贵忠, 刘峰. 1f信号的积分多小波变换表示. 电子与信息学报, 2004, 26(10):16381644. .[6]Mariantonia C, Montefusco L B, Puccio L. Multiwavelet anlaysis and signal processing[J].IEEE Trans. on Circuits and Systems-II: Analog and Digital Signal Processing.1998, 45(8):970-[7]Chui C K, Lian J. A study of orthonormal multi-wavelets[J].J. Applied Numerical Mathematics.1996, 20(3):273-[8]Qingtang Jiang. Orthogonal multiwavelets with optimum time-frequency resolution[J].IEEE Trans. on Signal Processing.1998, 46(4):830-
计量
- 文章访问数: 2304
- HTML全文浏览量: 114
- PDF下载量: 686
- 被引次数: 0