Thompson-FDTD方法中的两步法
TWO-STEP S THOMPSON-FDTD METHOD
-
摘要: 本文将流体力学领域的微分-Thompson变换与时域有限差分(FDTD)技术结合起来,所形成的Thompson-FDTD方法,首次用来计算和分析任意形状介质体的电磁散射特性。该方法至少具有两个明显的优点:可以把不规则形体变换成规则形体,有利于精确匹配边界条件;可以任意调配网格分布,有利于提高计算精度。其数值实现进一步证实了该方法能精确模拟任意形状介质目标的电磁散射过程。Abstract: This paper combines the differential-Thompson transformation involved in hydromechanics with the finite difference time domain (FDTD) technique to form Thompson-FDTD method. This method is applied by the first time to calculate the electromagnetic scattering properties of arbitrarily shaped dielectric objects. This method has at least two obvious advantages: It can transform arbitrary shaped bodies into regular structures and thus the boundary conditions are matched accurately; it can willfully dispose the grid distribution and thus better numerical accuracy is achieved. The numerical simulation further confirms its validity.
-
Yee K S. Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media. IEEE Trans.on AP, 1966, AP-14(3): 302-307.[2]Fusco M. FDTD algorithm in curvilinear coordinates. IEEE Trans.on AP, 1990, AP-38(1): 76-89.[3]Chen J S, Yee K S, et al. Conformal FD-TD with overlap grids,IEEE Trans. on AP, 1992, AP-40(9): 1068-1075.[4]Zivanovic S S, Yee K S, Mei K K. A subgridding method for the finite difference-time domain method to solve Maxwells equations. IEEE Trans.on MTT, 1991, MTT-39(3): 471-479.[5]Thames F C, Thompson J F, et al. Numerical solution for viscous and potential flow about arbitrary two-dimensional bodies using body-fitted coordinates system[J].J. Comp.Phys.1977, 24:245-273[6]Liao C, Zhao Y, tin W. New method for numerical solution of Maxwells equations. Electron. Lett. 1995, 31(4): 261-262.[7]廖成,任朗.Thompson变换-FDTD方法模拟不规则形体的电磁散射间题.西南交通大学学报,1996, 31(3): 318-322.[8]Liso C, Jen L. Numerical solution for EM scattering about arbitrary two-dimensional bodies with the use of the Thompson-FDTD method[J].Microwave and Opt. Tech. Lett.1996, 13(4):233-2363.0.CO;2-9' target='_blank'>[9]Bayliss A, Turkel E. Radiation boundary condition for wave-like equations[J].Commun. Pure Appl .Math.1980, 33:707-725
计量
- 文章访问数: 2064
- HTML全文浏览量: 130
- PDF下载量: 480
- 被引次数: 0