C. Jutten, J. Herault, Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic, Signal Processing, 1991, 24(1), 1-10. [2]A.J. Bell, T. J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution, Neural Computation, 1995, 7(6), 1129-1159. [3]S. Amari, A. Cichocki, H. H. Yang, A new learning algorithm for blind signal separation, Advances in Neural Information Processing Systems, Cambridge, MA: MIT Press, 1996, 8, 657-663. [4]G. Burel, Blind separation of sources: A nonlinear neural algorithm, Neural Networks, 1992, 5(6),937-947. [5]L.C. Parra, Symplectic nonlinear component analysis, Advances in Neural Information Processing Systems, MA: MIT Press, 1996, 8,437-443. [6]P. Pajunen, A. Hyvarinen, J. Karhunen, Nonlinear blind source separation by self-organization maps, in Progress in Neural Information Processing, Berlin, Springer, 1996, 2, 1207-1210. [7]H.H. Yang, S. Amari, A. Cichocki, Information back-propagation for blind separation of sources from non-linear mixture, in Proc. ICNN, Houston, 1997, 2141-2146. [8]A. Taleb, C. Jutten, Source separation in post nonlinear mixtures: An entropy-based algorithm,in Proc. of ICASSP, Seattle, Washington, 1998, 2089-2092. [9]A. Hyvarinen, P. Pajunen, On existence and uniqueness of solutions in non-linear independent component analysis, in Proc. of IJCNN, Anchorage, Alaska, 1998, 1350-1355. [10]C. Goncalo, L. B. Almeida, Separation of nonlinear mixtures using pattern repulsion, in Proc.of the First International Workshop on Independent Component Analysis and Signal Separation,Aussois, France, 1999, 277-282. [11]S.M. Kendall, A. Stuart, The Advanced Theory of Statistics, London, Charles Griffin Company Limited, 1977, Chapt. 6. [12]O. Amblard, J. M. Brossier, Adaptive estimation of the fourth-order cumulant of a white stochastic process, Signal Processing, 1995, 42(1), 37-42.
|