基于拟生态优化算法的CDMA多用户检测方法
Research of Ecologic System Optimization Algorithms for Multi-user Detection in CDMA Communication Systems
-
摘要: 拟生态优化算法是一类模拟自然生态系统运行机制,求解复杂优化问题的智能计算方法,其中的蚁群算法和粒子群算法是较新出现的两种具有不同特点的方法。该文研究基本蚁群算法和离散粒子群算法,并结合CDMA多用户检测问题,改变算法的搜索机制,提出两种CDMA多用户检测的方法。从理论分析以及实验仿真的角度对比两种方法,表明两种方法的计算复杂度低且可以得到较好误码率性能,同时又各有特点。Abstract: An ecologic system optimization algorithm is a type of new developed evolutionary algorithm, which is based on swarm intelligence, and has the properties of converge quickly, simple rules. This paper research the ant colony optimization algorithm and the particle swarm optimization on discrete space, and describe two algorithms for the multi-user detection problem in Code Division Multiple Access(CDMA) communication system.The approach using some new methods to improve the search quality and efficiency, analyses and simulation results show the approach has low computational complexity, and the BER property of the algorithm is better than the conventional detector, to find a new method to solve the problem of MUD in CDMA.
-
Verdu. S, Multi-user Detection, Cambridge University Press, 1998: 303-312.[2]吴新余,郑宝玉,倪梁方. 分集接收混合遗传算法多用户检测器在异步CDMA移动通信中的应用研究[J]. 通信学报, 2003, 24(2): 27-36.[3]Dorigo. M, Maniezzo. V, Colorni. A. Ant system: Optimization by a colony of cooperating agents [J]. IEEE Trans. on Systems, Man and Cybernetics-PartB, 1996, 26(1): 1-13.[4]Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc IEEE Int Conf on Neural Networks[C], Perth, 1995: 1942-1948.[5]谢晓锋, 张文俊, 杨之廉. 微粒群算法综述[J]. 控制与决策, 2003, 18(2): 129-134.[6]Kennedy J, Eberhart R. A discrete binary version of the particle swarm algorithm [A]. Proc IEEE Int Conf on Systems, Man, and Cybernetics[C].Orlando, 1997: 4104-4108.[7]Verdu. S. Computational complexity of optimum multiuser detection[J].Algorithmica.1989, 4(3):303-[8]忻斌健, 汪镭, 吴启迪. 蚁群算法的研究现状和应用及蚂蚁智能体的硬件实现[J]. 同济大学学报, 2002, 30(1): 82-87.[9]吴斌, 史忠植. 一种基于蚁群算法TSP问题分段求解算法[J].计算机学报, 2001, 24(12): 1328-1333.
计量
- 文章访问数: 2367
- HTML全文浏览量: 97
- PDF下载量: 767
- 被引次数: 0