用复信号处理方法研究二维复指数信号最小二乘估计的渐近性质
ASYMPTOTIC PROPERTY STUDY OF THE LEAST SQUARE ESTIMATES OF 2-D EXPONENTIAL SIGNALS VIA COMPLEX SIGNAL PROCESSING APPROACH
-
摘要: 二维复指数信号广泛应用于许多实际场合,本文利用复随机信号处理方法研究其最小二乘估计的渐近性能。D.Kundu等人(1996)是将复信号表为实部和虚部来讨论的,因而非常繁琐。用复信号处理方法将可使讨论大大简化。Abstract: By use of the approach of complex random signal processing, the asymptotic statistical properties of the least square estimates of 2-D exponential signals are studied. In doing so it is found that the representation is considerably more intuitive, and is analytically more tractable.
-
Rao C R, Zhao L C, Zhou B. Maximum likelihood estimation of 2-D superimposed exponential signals. IEEE Trans. on Signal Processing, 1994, SP-42(7): 1795-1802.[2]Rao C R, Zhao L C. Asymptotic behavior of maximum likelihood estimates of superimposed expo-[3]nential signals. IEEE Trans. on Signal Processing, 1993, SP-41(3): 1461-1464.[4][3][5]Kundu D, Mitra A. Asymptotic properties of the least squares estimates of 2-D exponetial signals[J].Multidimensional Systems and Signal Processing.1996, 7(2):135-150[6]Kundu D. Asymptotic theory of least squares estimator of a particular nonlinear regression model Statistics and Probability Letters, 1993, 18(l): 13-17.[7]严士健,等.概率论基础.北京:科学出版社,1982,452-473.
计量
- 文章访问数: 2560
- HTML全文浏览量: 125
- PDF下载量: 575
- 被引次数: 0