高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多项式分解理论的低时延完全重构两通道滤波器组的设计

石光明 焦李成

石光明, 焦李成. 基于多项式分解理论的低时延完全重构两通道滤波器组的设计[J]. 电子与信息学报, 2002, 24(7): 910-915.
引用本文: 石光明, 焦李成. 基于多项式分解理论的低时延完全重构两通道滤波器组的设计[J]. 电子与信息学报, 2002, 24(7): 910-915.
Shi Guangming, Jiao Licheng . Design of two-channel low-delay PR filter banks based on theory of polynomial factorization[J]. Journal of Electronics & Information Technology, 2002, 24(7): 910-915.
Citation: Shi Guangming, Jiao Licheng . Design of two-channel low-delay PR filter banks based on theory of polynomial factorization[J]. Journal of Electronics & Information Technology, 2002, 24(7): 910-915.

基于多项式分解理论的低时延完全重构两通道滤波器组的设计

Design of two-channel low-delay PR filter banks based on theory of polynomial factorization

  • 摘要: Euclid多项式分解算法可以用于滤波器组的设计,该文首先讨论了Euclid分解算法与低时延两通道完全重构的滤波器组设计理论,推导出可实现分解的条件,并从理论上加以证明,由于Euclid分解算法具有非唯一性,该文提出了一种新的算法以确定唯一的分解,并将这种算法用于具有低时延特性的两通道全重构滤波器组的设计,最后,通过给出的基于分解方法的设计例子,说明该方法是有效的。
  • T.Q. Nguyen, P. P. Vaidyanathan Two channel perfect reconstruction FIR QMF structures which yield linear-phase analysis and synthesis filters, IEEE Trans. on ASSP. 1989, ASSP-37(.5).676-690.[2]Hiroshi Ochi, Morihiko Ohta, et al., Linear programming design of two-cbannel perfectreconstruction biorthogonal filter banks linear phase and low delay, IEEE International Symposium on Circuits and System, Hong Kong, 1997, 969-972.[3]P. Saghizadeh, N. Willson, Using unconstrained optimization in the design of two-channel perfectreconstruction linear-phase FIR filter banks, Proc. of the 37th Midwest Symposium on Circuits and Systems, Vol. 2, Lafayette, LA, USA, 1995, 1053-1.[4]Liu W. Chen S. C, Low delay perfect reconstruction two-channel FIR/IIR filter banks and wavelet bases with SOPOT coefficients, Proc. IEEE International Conference on ASSP, Istanbul. Turkey..June 5-.9. 2000, 102-103.[5]M.Vetterli. C. Herley, Wavelets and Filter Banks, Theory and Design. IEEE Trans. on SP..1992.SP-40(9), 2207-2232.[6]M.r.k. Khansari, E. Dubois, Pad table, continued fraction expansion, and perfect reconstruction tilter banks, IEEE Trans. on SP., 1995, SP-44(8), 1955-1963.[7]I. C. Daubechies, W. Sweldents, Factoring Wavelet transform into lifting steps, J. Fourier Analysis and Application,1998, 4(3), 247-269.[8]P.P. Vaidyanathan, Multirate systems and filter banks, Englewood Cliffs, NJ: Prentice Hall.1993, Chapter 5, 192-203.[9]陈开周,最优化计算方法,西安,西安电子科技大学出版社,1984,第五章.
  • 加载中
计量
  • 文章访问数:  2192
  • HTML全文浏览量:  100
  • PDF下载量:  562
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-10-08
  • 修回日期:  2001-05-14
  • 刊出日期:  2002-07-19

目录

    /

    返回文章
    返回