不含短环的(n,3,k)LDPC码的几何构造方法
Geometry Construction of (n,3,k) LDPC Codes without Short Cycles
-
摘要: 该文基于不含短环的(n,2, k)规则低密度奇偶校验(LDPC)码,提出了一种最短环长为8的(n,3, k)规则LDPC码的几何构造方法,该方法简单直观而有效。仿真结果显示,在AWGN信道中其具有明显优于随机构造的规则LDPC码的性能。Abstract: In this paper, based on (n,2,k) regular Low Density Parity-Check (LDPC) codes without short cycles, a geometry method for the construction of(n,3,k) regular LDPC codes with 8-girth is proposed,which is simple,intuitionistic and effective. Simulation results show that these codes achieve obviously better performance than randomly constructed regular LDPC codes over AWGN channals.
-
Gallager R G. Low-density parity check codes. IRE Trans. on Information Theory, 1962, IT- 8(3): 208.220.[2]李水平,刘玉君,邢庆军,李智勇. LDPC码的环分析. 信息工程大学学报, 2003, 4(4): 82.84.[3]刘斌,童胜,白宝明. 不含小环的低密度校验码的代数构造方法[J].电子与信息学报.2004, 26(11):1778-浏览[4]Haotian Zhang, Moura Jose M F. The design of structured regular LDPC codes with large girth. IEEE Trans. on Globecom, 2003: 4022.4027.[5]Zhang Tong, Parhi Parhi Keshab. Joint code and decoder design for implementation oriented (3,k) regular LDPC codes. Department of Electrical and Computer Engineering University of Minnesona, IEEE Trans. on Com., 2001: 1232 .1236.[6]Hu Xiao-Yu. Eleftheriou Evangelos, Arnold Dieter Michael, Dholakia Ajay. Efficient implementations of the sum-product algorithm for decoding LDPC codes [A]. GLOBECOM[C]. San Antonio. IEEE, 2001: 1036.1036.
计量
- 文章访问数: 2159
- HTML全文浏览量: 84
- PDF下载量: 828
- 被引次数: 0