高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于雷达距离象序列的循环神经网络飞机目标识别

肖怀铁 庄钊文 郭桂蓉

肖怀铁, 庄钊文, 郭桂蓉. 基于雷达距离象序列的循环神经网络飞机目标识别[J]. 电子与信息学报, 1998, 20(3): 386-391.
引用本文: 肖怀铁, 庄钊文, 郭桂蓉. 基于雷达距离象序列的循环神经网络飞机目标识别[J]. 电子与信息学报, 1998, 20(3): 386-391.
Xiao Huaitie, Zhuang Zhaowen, Guo Guirong . AIRCRAFT TARGET RECOGNITION BASED ON RADAR RANGE PROFILE SEQUENCES USING RECURRENT NEURAL NETWORK[J]. Journal of Electronics & Information Technology, 1998, 20(3): 386-391.
Citation: Xiao Huaitie, Zhuang Zhaowen, Guo Guirong . AIRCRAFT TARGET RECOGNITION BASED ON RADAR RANGE PROFILE SEQUENCES USING RECURRENT NEURAL NETWORK[J]. Journal of Electronics & Information Technology, 1998, 20(3): 386-391.

基于雷达距离象序列的循环神经网络飞机目标识别

AIRCRAFT TARGET RECOGNITION BASED ON RADAR RANGE PROFILE SEQUENCES USING RECURRENT NEURAL NETWORK

  • 摘要: 本文应用雷达目标瞬态高分辨距离象序列来识别目标,提出了一种基于距离象序列的实时循环神经网络分类方法,并进行了三类飞机目标的分类实验研究,结果表明,该方法可以得到高的识别率。
  • Fielding K, Ruck D. Spatio-temporal pattern recognition using hidden Markov models. IEEE Trans. on AES, 1994, AES-31(4): 1292-1300.[2]Farhat N H. Microwave diversity imaging and automated target identification based on models[3]of neural networks. Proc[J].IEEE.1989, 77(5):670-680[4]Jouny I, Garber F. Classificaton of radar targets using synthetic neural networks. IEEE Trans.[5]on AES, 1993, AES-29(2): 336-344.[6]Botha E C,et al. Feature based classification of aerospace radar targets using neural networks[J].Neural Networks.1996, 9(1):129-142[7]Hudson S, Psaltis D. Correlation filters for aircraft identification from radar range profiles. IEEE[8]Trans. on AES, 1993, AES-29(3): 741-748.[9]Zyweck A, Bogner R E. Radar target classification of commercial aircraft. IEEE Trans. on AES, 1996, AES-32(2): 598-606.[10]Vermeulen P,et ad. Radar target recognition with neural nets. The Trans. of the South African[11]Institute of Electrical Engineers, 1993, 84(2): 174-180.[12]Tank D W, Hopfield J. Neural computation by concentrating information in time. Proceedings[13]of the National Academy of Science of the USA, 1987, 84: 1896-1900.[14]Seidl D R, Lorenz R D. A structure by which a recurrent neural network can approximate a[15]nonlinear dynamic system. Proceedings of the JCNN, Seattle: 1991, 709-714.[16]Lindsey, Randall L. Fuction prediction using recurrent neural networks: [MS thesis]. AFIT/GE/ENG/91D-02.[17]Williams R J, Zipser D. An algorithm for continually running fully recurrent neural networks[J].Neural computation.1989, 1:270-280
  • 加载中
计量
  • 文章访问数:  2333
  • HTML全文浏览量:  116
  • PDF下载量:  537
  • 被引次数: 0
出版历程
  • 收稿日期:  1997-01-06
  • 修回日期:  1997-08-01
  • 刊出日期:  1998-05-19

目录

    /

    返回文章
    返回