基于雷达距离象序列的循环神经网络飞机目标识别
AIRCRAFT TARGET RECOGNITION BASED ON RADAR RANGE PROFILE SEQUENCES USING RECURRENT NEURAL NETWORK
-
摘要: 本文应用雷达目标瞬态高分辨距离象序列来识别目标,提出了一种基于距离象序列的实时循环神经网络分类方法,并进行了三类飞机目标的分类实验研究,结果表明,该方法可以得到高的识别率。Abstract: In this paper,the temporary high resolution radar target range profile sequences were used to identify aircraft targets, and a real time recurrent neural network classification method was proposed based on range profile sequences.The experiments of classification of three kinds of aircraft targets were performed, and demostrated that there were high classification performance using the proposed method.
-
Fielding K, Ruck D. Spatio-temporal pattern recognition using hidden Markov models. IEEE Trans. on AES, 1994, AES-31(4): 1292-1300.[2]Farhat N H. Microwave diversity imaging and automated target identification based on models[3]of neural networks. Proc[J].IEEE.1989, 77(5):670-680[4]Jouny I, Garber F. Classificaton of radar targets using synthetic neural networks. IEEE Trans.[5]on AES, 1993, AES-29(2): 336-344.[6]Botha E C,et al. Feature based classification of aerospace radar targets using neural networks[J].Neural Networks.1996, 9(1):129-142[7]Hudson S, Psaltis D. Correlation filters for aircraft identification from radar range profiles. IEEE[8]Trans. on AES, 1993, AES-29(3): 741-748.[9]Zyweck A, Bogner R E. Radar target classification of commercial aircraft. IEEE Trans. on AES, 1996, AES-32(2): 598-606.[10]Vermeulen P,et ad. Radar target recognition with neural nets. The Trans. of the South African[11]Institute of Electrical Engineers, 1993, 84(2): 174-180.[12]Tank D W, Hopfield J. Neural computation by concentrating information in time. Proceedings[13]of the National Academy of Science of the USA, 1987, 84: 1896-1900.[14]Seidl D R, Lorenz R D. A structure by which a recurrent neural network can approximate a[15]nonlinear dynamic system. Proceedings of the JCNN, Seattle: 1991, 709-714.[16]Lindsey, Randall L. Fuction prediction using recurrent neural networks: [MS thesis]. AFIT/GE/ENG/91D-02.[17]Williams R J, Zipser D. An algorithm for continually running fully recurrent neural networks[J].Neural computation.1989, 1:270-280 期刊类型引用(6)
1. 陈维,何剑,刘毅. 具有免疫效力的计算机病毒传播模型的动力学分析和优化控制研究. 浙江大学学报(理学版). 2024(03): 336-346 . 百度学术
2. 王刚,陆世伟,冯云,刘文斌,马润年. 网络节点增减下的潜伏型病毒传播行为建模研究. 电子学报. 2022(02): 273-283 . 百度学术
3. 王刚,冯云,马润年. 操作系统病毒时滞传播模型及抑制策略设计. 西安交通大学学报. 2021(03): 11-19 . 百度学术
4. 孟庆微,仇铭阳,王刚,马润年. 零日病毒传播模型及稳定性分析. 电子与信息学报. 2021(07): 1849-1855 . 本站查看
5. 王刚,王志屹,张恩宁,马润年,陈彤睿. 多阶段平台动态防御的Markov演化博弈模型及迁移策略. 兵工学报. 2021(08): 1690-1697 . 百度学术
6. 王刚,冯云,陆世伟,马润年. 多操作系统异构网络的病毒传播模型和安全性能优化策略. 电子与信息学报. 2020(04): 972-980 . 本站查看
其他类型引用(0)
-
计量
- 文章访问数: 2344
- HTML全文浏览量: 120
- PDF下载量: 537
- 被引次数: 6