支撑矢量预选取的双色Voronoi图方法
Pre-extracting support vector for support vector maching using bi-color voronoi diagrams
-
摘要: 支撑矢量机是在统计学习理论的基础上发展出来的一种新的模式识别方法,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,在支撑矢量机中,支撑矢量的选取相当困难,成为其应用的瓶颈问题。该文利用Voronoi图在特征空间特有的构造特性,提出了一种预先选取支撑矢量的新方法双色Voronoi图方法。该方法针对数据在空间的分布特性,在训练支撑矢量机以前,利用样本数据的双色Voronoi图确定候选的支撑矢量,然后在这些预选的矢量上进行学习。试验证明了该方法的有效性及可行性。Abstract: Support Vector Machines (SVMs) are a new generation learning system based on recent advances in statistical learning theory. SVMs have many well features that make them attractive for small samples, nonlinear and high dimensional pattern recognition. However, choice of Support Vectors(SVs) is difficult in SVMs, which is a bottleneck problem. In this paper, a novel method using bi-color Voronoi diagram is proposed to pre-extract SVs based on Voronoi diagram. Considering the distribution feature of samples space, this method determi-nates SVs based on the bi-color Voronoi diagram before training SVMs. Learning is based on these pre-extracted vectors. Experiments show that this method is feasible and effective.
-
V.N.Vapnik著,张学工译,统计学习理论的本质[M].北京,清华大学出版社,2000年,11-126.[2]V.N.Vapnik,An overview of statistical learning theory,IEEE Trans.on Neural networks,1999,10(5),988-999.[3]边肇祺,张学工,模式识别[M],北京,清华大学出版社,2000年,161-176,284-305.[4]焦李成,张莉,周伟达,支撑矢量预选取的中心距离比值法,电子学报,2001,29(3),383-386.[5]周培德,计算几何--算法分析与设计[M],北京,清华大学出版社,2000年,88-130,236-271.[6]F. Aurenhammer, Voronoi diagrams-a survey of a fundamental geometric data structure, ACM Comput. Survey, 1991, 23(3), 345-405.[7]G.W. Rogers, J. Solka, D. S. Malyevac, C. E. Priebe, A self-organizing network for computing a posteriori conditional class probability, IEEE Trans. on Systems, Man and Cybernetics, 1993,23(6), 1672-1682.[8]N.K. Bose, A. K. Garga, Neural network design using Voronoi diagrams, IEEE Trans. on Neural Networks, 1993, 4(5), 778-787.[9]C. Gentile, M. Sznaier, An improved Voronoi-diagram-based neural net for pattern classification,IEEE Trans. on Neural Networks, 2001, 12(5), 1227-1234.[10]阎平凡,张长水,人工神经网络与模拟进化计算[M],北京,清华大学出版社,2000年,60-95.[11]D.Chen,Efficient geometric algorithm on the EREW PRAM,IEEE Trans.on Parallel Distrib.Syst.,1995,6(1),41-47. 期刊类型引用(7)
1. 张军,姜文涛,张云,罗婷倚,余秋琴,杨哲. 基于极限梯度提升和探地雷达时频特征的水泥路面脱空识别. 同济大学学报(自然科学版). 2024(01): 104-114+121 . 百度学术
2. 李爽,张潇巍,谭旭,徐凌飞,吕生华,文剑. 基于深度学习的树木根系探地雷达多目标参数反演识别. 北京林业大学学报. 2024(04): 103-114 . 百度学术
3. 甘海铭,闫坤,辛文凯,刘宗辉. 改进预测反褶积抑制探地雷达多次波方法研究. 计算机仿真. 2024(06): 359-363 . 百度学术
4. 白雪,曹涵颖. 基于注意力卷积神经网络的服装款式图廓特征识别方法. 毛纺科技. 2024(07): 116-121 . 百度学术
5. 王惠琴,罗佳,何永强,曹明华,高大庆,李佳豪. 改进YOLOv5的探地雷达常见地下管线识别. 地球物理学报. 2024(09): 3588-3604 . 百度学术
6. 吴学礼,宋凯,史思远,甄然. 基于PM算法和噪声识别模型的探地雷达降噪方法. 无线电工程. 2024(10): 2279-2287 . 百度学术
7. 许德根. 基于Daubechies小波域KL变换的探地雷达信号处理. 工程技术研究. 2022(11): 13-15 . 百度学术
其他类型引用(9)
-
计量
- 文章访问数: 2231
- HTML全文浏览量: 100
- PDF下载量: 541
- 被引次数: 16