高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于奇异值分解的超定盲信号分离

朱孝龙 张贤达

朱孝龙, 张贤达. 基于奇异值分解的超定盲信号分离[J]. 电子与信息学报, 2004, 26(3): 337-343.
引用本文: 朱孝龙, 张贤达. 基于奇异值分解的超定盲信号分离[J]. 电子与信息学报, 2004, 26(3): 337-343.
Zhu Xiao-long, Zhang Xian-da. Overdetermined Blind Source Separation Based on Singular Value Decomposition[J]. Journal of Electronics & Information Technology, 2004, 26(3): 337-343.
Citation: Zhu Xiao-long, Zhang Xian-da. Overdetermined Blind Source Separation Based on Singular Value Decomposition[J]. Journal of Electronics & Information Technology, 2004, 26(3): 337-343.

基于奇异值分解的超定盲信号分离

Overdetermined Blind Source Separation Based on Singular Value Decomposition

  • 摘要: 该文研究超定盲信号分离,即观测信号个数不少于源信号个数情况下的盲信号分离问题。作者 从分离矩阵的奇异值分解出发,首先提出一种基于独立分量分析的超定盲信号分离代价函数,接着推导了一般梯度学习算法。此后,借助于相对梯度的概念,证明超定盲信号分离与通常的完备盲信号分离具有相同形式的自然梯度算法。仿真试验验证了算法的有效性。
  • Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution[J].Neural Computation.1995, 7(6):1129-1159[2]Karhunen J, Joutsensalo J. Representation and separation of signals using nonlinear pca type learning[J].Neural Networks.1994, 7(1):113-127[3]Karhunen J, Pajunen J, Oja E. The nonlinear PCA criterion in blind source separation: Relations with other approaches[J].Neurocomputing.1998, 22(1):5-20[4]Comon P. Independent component analysis, a new concept? Signal Processing, 1994, 36(3): 287-314.[5]Amari S I.[J].Cichocki A, Yang H H. A new learning algorithm for blind signal separation. In D.S. Touretzky, M. C. Mozer M. E. Hasselmo (Eds.), Advance in Neural Information Processing Systems, Cambridge, MA: MIT Press.1996,:-[6]Cardoso J F, Laheld B. Equivariant adaptive source separation[J].IEEE Trans. on Signal Process ing.1996, 44(12):3017-3030[7]Yang H H, Amari S I. Adaptive on-line learning algorithms for blind separation-maximum entropy and minimum mutual information[J].Neural Computation.1997, 9(5):1457-1482[8]Amari S I. Natural gradient learning for over- and under-complete bases in ICA[J].Neural Computation.1999, 11(8):1875-1883[9]Zhang L Q, Cichocki A, Amari S I. Natural gradient algorithm for blind separation of overdetermined mixture with additive noise[J].IEEE Signal Processing Letters.1999, 6(11):293-295[10]Choi S, Cichocki A, Zhang L Q, Amari S I. Approximate maximum likelihood source separation using natural gradient. 3rd IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications, Taoyuan, Taiwan, 2001: 20-23.[11]Lee T W, Lewicki M S, Girolami M, Sejnowski T J. Blind source separation of more sources than mixtures using overcomplete representations[J].IEEE Signal Processing Letters.1999, 6(4):87-90[12]Lewicki M S, Sejnowski T J. Learning overcomplete representation[J].Neural Computation.2000,12(2):337-365[13]张贤达.信号处理中的线性代数.北京:科学出版社,1997,第6章.[14]Amari S I. Natural gradient works efficiently in learning[J].Neural Computation.1998, 10(2):251-276
  • 加载中
计量
  • 文章访问数:  2350
  • HTML全文浏览量:  110
  • PDF下载量:  1278
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-08-30
  • 修回日期:  2003-03-28
  • 刊出日期:  2004-03-19

目录

    /

    返回文章
    返回