高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

M带正交子波包理论

张建康 保铮 焦李成

张建康, 保铮, 焦李成. M带正交子波包理论[J]. 电子与信息学报, 1998, 20(1): 1-6.
引用本文: 张建康, 保铮, 焦李成. M带正交子波包理论[J]. 电子与信息学报, 1998, 20(1): 1-6.
Zhang Jiankang, Bao Zheng, Jiao Licheng . THEORY OF M-BAND WAVELET PACKETS[J]. Journal of Electronics & Information Technology, 1998, 20(1): 1-6.
Citation: Zhang Jiankang, Bao Zheng, Jiao Licheng . THEORY OF M-BAND WAVELET PACKETS[J]. Journal of Electronics & Information Technology, 1998, 20(1): 1-6.

M带正交子波包理论

THEORY OF M-BAND WAVELET PACKETS

  • 摘要: M带正交子波基由于所具有的优良特性得到了广泛关注。2带子波包具有划分较高频率倍频程的能力,可用于改善子波对时间-频率局部化的性能,推广了信号的适用范围。本文用类似于从2带正交子波基扩展到2带子波包的概念,建立了M带子波包的的理论框架,并把有关2带子波包的定义、概念和性质推广到一般的M带子波包,给出了相应的证明。
  • Coifman R R, Wickerhauser M. Entropy-based algorithms for best[2]Information Theory, 1992, IT-38(2): 713-718.[3]Gopinath R A, Burrus C S. Wavelet filter banks. in C.K.Chui, Ed.,[4]and Applications. New York: Academic, 1992, 603-654.[5]Heller P, Resikoff H W, Wells R O. Wavelet matrices and the representation of discrete functions: in C. K. Chui, Ed., Wavelets--A Tutorial in Theory and Applications. New York: Academic 1992,15-51.[6]Zou H, Tewfik A H. Discrete orthogonal M-band wavelet decomposition. in Proc.ICCSSP,San Francisco, CA: 1992, IV-605-IV-608.[7]Alkin O, Caglar H. Design of efficient M-band coders with linear-phase and perfect reconstruction properties. IEEE Trans. on Signal Processing, 1995, SP-43(7): 1579-1590.[8]Tewfik A H. Wavelet domain bearing estimation in unknown correlated noise IEEE ICASSP, 1994, IV-109-IV-112.[9]Daubechies I, Orthonormal bases of compactly supported wavelets. Comm[J].Pure Applied Math.1988, 41(3):909-996[10]Cohen A,et al. Biorthogonal bases of compactly supported wavelets. Comm. Pure Applied Math.,[11]92, 45(2): 485-560.[12]Lawton W M. Necessary and sufficient conditions for constructing orthonormal wavelets bases. J.[13]Math. Physics,1991,32 (1): 57-61.[14]Steffen P, et al. Theory of regular M-band wavelet bases, IEEE Trans. on SP, 1993, SP-41(12): 3497-3510.[15]Herley C, et al. Tiling of the time-frequency plane: Construction of arbitrary orthogonal bases and fast tiling algorithms. IEEE Trans. on SP, 1993, 41(12): SP-3341-3359.
  • 加载中
计量
  • 文章访问数:  1958
  • HTML全文浏览量:  80
  • PDF下载量:  403
  • 被引次数: 0
出版历程
  • 收稿日期:  1996-06-20
  • 修回日期:  1997-04-17
  • 刊出日期:  1998-01-19

目录

    /

    返回文章
    返回