高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于紧支撑径向基函数与共轭梯度法的大规模散乱数据快速曲面插值

于秋则 曹矩 柳健 田金文

于秋则, 曹矩, 柳健, 田金文. 基于紧支撑径向基函数与共轭梯度法的大规模散乱数据快速曲面插值[J]. 电子与信息学报, 2005, 27(2): 298-301.
引用本文: 于秋则, 曹矩, 柳健, 田金文. 基于紧支撑径向基函数与共轭梯度法的大规模散乱数据快速曲面插值[J]. 电子与信息学报, 2005, 27(2): 298-301.
Yu Qiu-ze, Cao Ju, Liu Jian, Tian Jin-wen. Rapid Surface Interpolation from Massive Scattered Data Using Compactly Supported Radial Basis Functions and Conjugate Gradient Method[J]. Journal of Electronics & Information Technology, 2005, 27(2): 298-301.
Citation: Yu Qiu-ze, Cao Ju, Liu Jian, Tian Jin-wen. Rapid Surface Interpolation from Massive Scattered Data Using Compactly Supported Radial Basis Functions and Conjugate Gradient Method[J]. Journal of Electronics & Information Technology, 2005, 27(2): 298-301.

基于紧支撑径向基函数与共轭梯度法的大规模散乱数据快速曲面插值

Rapid Surface Interpolation from Massive Scattered Data Using Compactly Supported Radial Basis Functions and Conjugate Gradient Method

  • 摘要: 该文提出一种快速大规模散乱数据的曲面插值算法。在此算法中,首先采用紧支撑径向基函数(CSRBF)作为插值基函数,采用CSRBF的优点是保证构成的系数方程组是对称正定而且系数是稀疏的。这样可保证系数方程组一定可解而且可以减少内存的开销。其次采用共轭梯度法求解大规模系数方程组。该算法在系数方程组的系数矩阵A:NN是对称正定的情况下,最多迭代N步就可以求得方程组的解,实验结果表明该算法的快速性,特别适合大规模散乱数据的曲面的插值。
  • Seungyong Lee, George wolberg, Sung Yong Shin. Scattered data Interpolation with multilevel B-splines[J].IEEE Trans. on Visualization and Computer Graphics.1998, 3(3):228-[2]Franke R, Nielson G M. Scattered data interpolation and applications: A Tutorial and Survey, Geometric Modeling:Methods and Their Application, Hagen H and Roller D, eds.,Berlin: Springer-Verlag, 1991: 131 - 160.[3]Shapiro V. Real functions for representation of rigid solids[J].Computer Aided Geometric Design.1994, 11(2):153-[4]Shepard D. A two dimensional interpolation function for irregularly spaced data. Proc. ACM 23rd Natl Conf., New York,1968:517 - 524.[5]Clough R, Tocher J. Finite element stiffness matrices for analysis of plates in bending. Proceeding Conference Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, 1965:515 - 545.[6]Hardy R. Multiquadratic equations of topography and other irregular surfaces[J].,J. Geophysical Research.1971, 76(8):1905-[7]Dyn N. Interpolation and approximation by radial and related function. Chui C, Schumaker L, Ward J, et al.. Approximation Theory VI, San Diego, Calif.: Academic Press, 1989:211 - 234.[8]Wend H. Piecewise polynomial positive definite and compactly supported radial functions of minimal degree. AICM, 1995, 4:389 - 396.[9]Morse B S. Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions, Shape modeling Conference, Proc. SMI, Geneva, Italy, May 2001:89 - 98.[10]Nikita Kojekine, Ichiro Hagiwara, Savchenko V V. Software tools using CSRBFs for processing scattered data[J].Computers Graphics.2003, 27(2):311-[11]袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,1997:183-199.[12]关治,陈景良.数值计算方法.北京:清华大学出版社,1990:423-430.
  • 加载中
计量
  • 文章访问数:  2970
  • HTML全文浏览量:  99
  • PDF下载量:  1736
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-10-09
  • 修回日期:  2004-02-16
  • 刊出日期:  2005-02-19

目录

    /

    返回文章
    返回