深亚微米槽栅PMOSFET几何结构参数对抗热载流子特性的影响
Influence of geometrical structure parameters on hot-carrier-effect in deep-submicron grooved gate PMOSFET
-
摘要: 基于流体动力学能量输运模型,利用二维仿真软件Medici对深亚微米槽栅PMOS器件的几何结构参数,如:沟道长度、凹槽拐角、凹槽深度和漏源结深导致的负结深对器件抗热载流子特性的影响进行了研究。并从器件内部物理机理上对研究结果进行了解释。研究发现,在深亚微米和超深亚微米区域,槽栅器件能够很好地抑制热载流子效应,且随着凹槽拐角、负结深的增大,器件的抗热载流子能力增强。这主要是因为这些结构参数影响了电场在槽栅MOS器件的分布和拐角效应,从而影响了载流子的运动并使器件的热载流子效应发生变化。Abstract: Based on the hydro-dynamics energy transport model, the influence of geometrical structure parameters on hot-carrier-effect immunity in deep-submicron grooved gate PMOSFET is studied and explained in terms of device interior physics mechanism. These investigated structure parameters include effective channel length, concave corner and negative junction depth induced by change of source/drain junction depth and groove depth respectively. The research results indicate that the hot-carrier-effect is depressed deeply for grooved gate PMOSFET even in deep and super-deep-sub-micron region, and with the increase of concave corner and negative junction depth, the hot-carrier-effect immunity becomes better. It is mainly because that the structure parameters influence the electric field distribution in device and corner effect and so do the transportation of carriers.
-
K. Hieda, Sub-half-micrometer concave MOSFET with double LDD structure, IEEE Trans. on Electron devices, 1992, 39(3), 671-676.[2]K. Natori, I. sasaki, F. Masuoka, An analysis of the concave MOSFET, IEEE Trans. on Electron devices, 1978, 25(4), 448-456.[3]L. Jeongho, B. G. Park, A Novel 0.1m MOSFET Structure with Inverted Sidewall and Recessed Channel, IEEE Electron Device Letters, 1996, 17(4), 157-159.[4]任红霞,深亚微米槽栅CMOS器件特性研究,博士后研究工作报告,西安电子科技大学,1999年12月.[5]Technology Modeling Associates, Inc. Medici Two-Dimensional Device Simulation Program Version 2.3 Users Manual, Vol.1, Feb. 1997.
计量
- 文章访问数: 2341
- HTML全文浏览量: 151
- PDF下载量: 492
- 被引次数: 0