Dubuc S. Interpolation through an iterative scheme[J].J. of Math. Anal. and Appl.1986, 114:185-204[2]Deslauriers G, Dubuc S. Symmetric iterative interpolation processes. Constr. Approx,5: 49-68.[3]Donoho L D. Interpolating wavelet transform. Preprint, Department of Statistics, Stanford Uni-[4]versity, 1992.10.[5]Sweldens W. The lifting scheme: a custom-design construction of biorthogonal wavelets[J].Appl. Comput. Harmon. Anal.1996, 3(2):186-200[6]Harten A. Multiresolution representation of data: a general framework[J].SIAM J. Numer. Anal.1996, 33(3):1205-1256[7]Krantz G S. (editor), Wavelet: Mathematics and Applications. Florida, U.S.A: CRC Press, 1994, Chapter4: 185-186.[8]Sweldens W, Schroder P. Building your own wavelets at home. Technical Report 1995. 5, De-[9]partment of Math. Univ. of Carolina.[10]Saito N, Beylkin G. Multiresolutxon respresentations using the autocorrelation functions of com-pactly supported wavelets. IEEE Trans. on SP, 1993, SP-41(12): 3584-3590.[11]崔锦泰(著),程正兴(译),小波分析导论.西安:西安交通大学出版社,1994, 189-206.[12]Donoho L D. De-noising by soft-thresholding. IEEE Trans. on. IT, 1995, IT-11(3): 613-627.[13]石卓尔. 子波信号检测与区间内插子波:[博士论文]. 西安: 西安电子科技大学,1997.2.[14]Johnstone M 1, Silverman W B. Wavlet threshold estimators for data with correlated noise, Technical report, Dept. of Statistics Stanford Univ.,1996.8.[15]Shui Penglang, Bao Zheng. Signal-adapted biorthogonal interpolating recursive wavelet. Electron. Lett.,1998,10, 34(20): 1920-1921.
|