用线性函数空间理论求解标量波动方程和泊松方程的反演问题
INVERSE TRANSFORM OF THE SCALAR WAVE EQUATION AND POISSION S EQUATION BY THE CONCEPTS OF LINEAR SPACE
-
摘要: 基于线性函数空间理论的矩量法不仅适用于电磁场问题的数值计算,而且适用于解析法求解电磁场间题。本文分析了用本征函数作试函数和展开函数时的标量波动方程和泊松方程的反演形式,得到了一个很简单的对于各种边界条件普遍适用的公式。这一公式不仅适用于求解标量波动方程和泊松方程,而且只要稍加修改还可适用于解矢量波动方程问题,即求普遍形式的电磁场的激励问题。
-
关键词:
Abstract: The moment method based on the concepts of linear spaee can be applied not only to numerieal computation of the Electromagnetic field, but also to the analytic solution. By taking the eigenfunetions as basis functions and test funetions, a very simple, but generalized formula of the solution for the scalar wave equations and Poission s equations can be got. This formula not only can be applied to the scalar wave equations; but also can be applied to vector wave equations by some modifications. -
C. T. Tai, Dyadic Greens Function in Electromagnetic Theory, Intext Educational publishers, Scranton, Pa. 1971.[2]R. E. Collin, Can. J. Physics, 51(1973), 1135.[3]C. T. Tai, Proc. IEEE, 61(1973), 480.[4]R. F. Harrington, Field Computation by Moment Methods, The Macmillan Company, New York, 1968.
计量
- 文章访问数: 2302
- HTML全文浏览量: 121
- PDF下载量: 490
- 被引次数: 0