基于稀疏成份分析的几何绕射模型参数估计
Parameter Estimation of GTD Model Based on Sparse Component Analysis
-
摘要: 雷达目标散射中心的参数估计对目标特性分析和目标识别有重要意义。该文以几何绕射模型为基础,综合利用多频段的频域测量数据,给出了散射中心位置、幅度和散射类型参数的融合估计方法。数值仿真结果表明,该方法能有效地挖掘模型信息,具有超分辨能力,给超宽带雷达信号处理提供了新的途径。Abstract: Parameter estimation of radar target scatterer plays an important role in the process of target characteristics analysis and target recognition. Based on the GTD(Geometrical Theory of Diffraction) parametric model, this paper presents a novel method which can synthetically apply the multi-band measurements in frequency domain and effectively estimate the parameters of scatterers, including location, amplitude and scattering type. The numeric results indicate that the method can effectively mine the information hidden in the model and hold the ability of supper-resolution, which provides a new way to ultra-wide-band signal processing of radar.
-
Wehner D R. High Resolution Radar(2nd ed). Boston, MA: Artech House, 1994: 168173. .[2]Keller J B. Geometrical theory of diffraction. Journal of the Optical Society of America, 1962, 52(2): 116130. .[3]Hurst M P, Mittra R. Scattering center analysis via Pronys model. IEEE Trans. on Antennas and Propagation, 1987, 35(8): 986988. .[4]Potter L C, Chiang D M, et al.. GTD-based parametric model for radar scattering. IEEE Trans. on Antennas and Propagation, 1995, 43(10): 10581066. .[5]McClure M R, and Carin L. Matching pursuits with a wave-based dictionary. IEEE Trans. on Signal Processing, 1997, 45(12):29122927. .[6]Chen S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Review, 2001, 43(1): 129159. .[7]Gorodnistsky I F, and Rao B D. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm[J].IEEE Trans. on Signal Processing.1997, 45(3):600-[8]Rao B D, Engan K, et al.. Subset selection in noise based on diversity measure minimization[J].IEEE Trans. on Signal Processing.2003, 51(3):760-[9]Cuomo K M, Piou J E, Mayhan J T. Ultrawide-band coherent processing[J].IEEE Trans. on Antennas and Propagation.1999, 47(6):1094-[10]钱颂迪等(编著). 运筹学(修订版). 北京: 清华大学出版社, 1990: 183.189.[11]Natarajan B. Sparse approximate solutions to linear systems. SIAM Journal on Computing, 1995, 24(2): 227234. 期刊类型引用(6)
1. 章蕾,张执. 基于虚拟现实技术的康复训练系统设计与效果评估研究. 计算机测量与控制. 2025(02): 317-324 . 百度学术
2. 郑威,杨俊杰,陶坤宇. 姿态航向参考系统中关联信息分级解耦方法. 上海电机学院学报. 2025(01): 45-51 . 百度学术
3. 莫玲,龙顺宇,蒋冠东,刘世杰. 基于STM32小型四旋翼飞行器硬件系统设计与实现. 工业控制计算机. 2024(05): 150-152 . 百度学术
4. 靳建波,孔令哲. 船载惯性测量单元姿态信息优化方法. 空间电子技术. 2022(05): 63-67 . 百度学术
5. 于玉丹,林伟,俞朝阳. 改进Sage-Husa 算法结合小波模糊阈值算法的MEMS陀螺去噪. 电子测量技术. 2022(19): 64-69 . 百度学术
6. 刘春,何敏,戴雷. 基于Mahony与改进Kalman融合的姿态解算方法. 电子测量与仪器学报. 2022(09): 64-71 . 百度学术
其他类型引用(8)
-
计量
- 文章访问数: 2171
- HTML全文浏览量: 78
- PDF下载量: 807
- 被引次数: 14