蒙特卡罗-牛顿法进行电路产品合格率估计和最优中心设计
MCA-NEWTON METHOD FOR CIRCUIT YIELD ESTIMATION AND OPTIMIZATION
-
摘要: 本文利用蒙特卡罗法估计电路产品合格率对元件参数中心值的一、二阶偏导数,再与牛顿最优化方法结合得到了一个电路中心设计的算法,为了提高偏导数估计值的精度,文中又给出了利用失败样本点的估计式。为了减少电路分析次数,作者提出了适用于蒙特卡罗分析的采样频率按权排序法,理论分析和算例表明:本文算法是成功的,适用于非凸、非单连通可行域,可进行中等规模电路的产品合格率估计和中心设计。
-
关键词:
Abstract: An algorithm for circuit yield estimation and optimization is described. To obtain the first and second derivatives of yield with respect to center and get the optimal circuit center, the Monte Carlo analysis and Newton method are employed. By using fail samples and rearranging sample frequencies according to their weights, two new methods for improving estimation and reducing computation are presented. Both theoretical analysis and calculation examples show that this algorithm performs well and can be used for middle-scale circuit design. No matter the region of acceptability is convex set or not, the algorithm is available. -
R.K. Brayton, et al.,Proc. IEEE, 69(1981), 1334.[2]K.Singghal and J. F. Piney IEEE Trans. on CAS, CAS-28(1981), 692.[3]D. E. Hocevar, et al., ibid, CAS-30(1983 ), 180.[4]D. M. Himmelbiau著,张文燊等译,实用非线性规划,科学出版社,1983.[5]于骁勇,电子电路优化设计的一个算法,中国电子学会CAS学会第五届年会论文集(西安),1989,pp 364-8.[6]E. Wehrhahn and R. Spence, IEEE Proc. ISCAS84, pp. 1424-38.[7]R. S. Soin and R. Spence, IEE Proc., pt. G, 127 (1980) , 260.[8]D. Agnew, and P. E. Men, ibid., 127(1980). 270.[9]M. A. Styblinski, et al., IEEE Proc. ISCAS81, pp. 554-7.[10]K. S. Tahim and R. Spence, IEEE Trans. on CAS, CAS-26(1979), 768.[11]于骁勇,重庆大学硕士论文,1985.
计量
- 文章访问数: 1884
- HTML全文浏览量: 146
- PDF下载量: 391
- 被引次数: 0