高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于累积量的两层前馈神经网络盲辨识

戴宪华

戴宪华. 基于累积量的两层前馈神经网络盲辨识[J]. 电子与信息学报, 2002, 24(1): 45-53.
引用本文: 戴宪华. 基于累积量的两层前馈神经网络盲辨识[J]. 电子与信息学报, 2002, 24(1): 45-53.
Dai Xianhua . Cumulant-bansed blind identification of two-layer feedforward neural networks[J]. Journal of Electronics & Information Technology, 2002, 24(1): 45-53.
Citation: Dai Xianhua . Cumulant-bansed blind identification of two-layer feedforward neural networks[J]. Journal of Electronics & Information Technology, 2002, 24(1): 45-53.

基于累积量的两层前馈神经网络盲辨识

Cumulant-bansed blind identification of two-layer feedforward neural networks

  • 摘要: 由于非线性系统输出是其参数的非线性函数,直接利用高阶累积量辨识两层前馈神经网络(FNN)通常是十分困难的。为解决这一问题,该文提出两种基于四阶累积量的FNN辨识方法。第一种方法,FNN的隐元在其输入空间利用多个线性系统近似,进而FNN利用一统计模型混合专家(ME)网络重新描述。基于ME模型,FNN参数可利用统计期望值最大化(EM)算法获得估计。第二种方法,为简化FNN的ME模型,引入隐含观测量。基于隐含观测量估计,FNN被分解为多个单隐元的训练问题,进而整体FNN可利用一两阶层ME描述。基于单隐元的参数估计,FNN可利用一具有更快收敛速度的简化算法获得估计。
  • J.M. Mendel, Tutorial on high-order statistics (spectra) in signal processing and system theory,theoretic results and some applications, Proc.[J]. IEEE.1991,79:278-[2]Hames A. Cadzow, Blind deconvolution via cumulant extrema, IEEE Signal Processing Magazine,1996, 13(3), 24-42.[3]D. Hatzinakos, C. L. Nikias, Blind equalization using a tricespectrum-based algorithm, IEEE Trans. on Comm., 1991, COM-39(5), 669-681.[4]B. Port, B. Ftiedlander, Blind equalization of digital communication channels using higher-order moments, IEEE Trans. on ASSP, 1991, ASSP-39(2), 522-526.[5]J.K. Tugnait, Identification of linear stochastic systems via second and fourth-order cumulants matching, IEEE Trans. on Information Theory, 1987, 33(5), 393-407.[6]Jitendra K. Tugnait, Blind equalization and channel estimation with partial response input signals, IEEE Trans. on Comm., 1997, COM-45(9), 1025-1442.[7]Vojin, Zivojnvic, Minimum fisher information of moment-constrained distributions with application to robust blind identification.[J]. Signal Processing.1998,65:297-[8]Michael I. Jordan, Lei Xu, Convergence results for the EM approach to mixtures of experts architectures, Neural Networks, 1995, 8(9), 1409-1431.[9]S.I. Amari, Information geometry of the EM and EM algorithms for neural network, Neural Networks, 1995, 8(9), 1379-1408.[10]Sheng Ma, James Farmer, An efficient EM-based training algorithm for feedforward neural networks, Neural Networks, 1997, 10(2), 243-256.[11]M.I. Jordan, Hierarchical mixtures of experts and EM algorithm, Neural Computation, 1994,6(2), 181-241.[12]R.A. Jacobs, Adaptive mixtures of local experts, Neural Computation, 1991, 3(1), 79-87.[13]B. Widrow, 30 years of adaptive neual networks, perceptron, madaline, and backpropagation,Proc. IEEE, 1990, 78(9), 1415-1442.
  • 加载中
计量
  • 文章访问数:  2217
  • HTML全文浏览量:  125
  • PDF下载量:  465
  • 被引次数: 0
出版历程
  • 收稿日期:  1999-09-13
  • 修回日期:  2000-07-07
  • 刊出日期:  2002-01-19

目录

    /

    返回文章
    返回