基于离散对数的动态(k,n)-门限方案
A Daynamic (k,n)-threshold secret sharing scheme based on discrete logarithm
-
摘要: 该文给出了一个基于离散对数的动态(k,n)一门限方案,它具有下述特点:(1)每个成员的子密钥可无限制地多次使用;(2)能够确认欺骗者;(3)当某个成员的子密钥泄密时,系统只须为该成员重新分配子密钥而不必更改其它成员的子密钥;(4)系统可以很方便地增加或删除一个成员;(5)恢复系统密钥时,采用并行过程。Abstract: A dynamic (k,n)-threshold secret sharing scheme based on discrete logarithm is proposed in this paper. It can reconstruct the different system secrets for many times without any restriction. Any cheater can be checked out. When some participants secret sharing values are revealed, they can be renewed without any effect on the others. It is convenient to add or to delete one or more participants. The system secret can be recovered with a parallel process.
-
A. Shamir , How to share a secret, Commun. ACM, 1979, 22(11), 612-613.[2]G.R. Blackley, Safeguarding cryptographic keys, Proc. Nat. Computer Conf. AFIPS Conf.Proc., USA, 1979, 313-317.[3]E.D. Karnin, J. W. Green, M. E. Hellman, On secret sharing systems, IEEE Trans. on IT, 1983,24(1), 231-241.[4]He. J., E. Dawson, Multistage secret sharing based on one-way function, Electron. Lett., 1994,30(19), 1591-1592.[5]L. Harn, Comment: Multistage secret sharing based on one-way function, Electron. Lett., 1995,31, (4), 262-263.[6]刘焕平,杨义先,杨放春,基于单向函数的多级密钥共享方案,电子科学学刊,1999,21(4),561-564.[7]R.G.E.Pinch,Online multiple secret sharing,Electron.Lett.,1996,32(12),1087-1088.[8]谭凯军,诸鸿文,基于单向函数的动态秘密分享机制,通信学报,1999,20(7),81-84.
计量
- 文章访问数: 2194
- HTML全文浏览量: 130
- PDF下载量: 706
- 被引次数: 0