高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于广义Gabor变换的最优LOFDM系统的脉冲成形

简伟 沈越泓 李毅

简伟, 沈越泓, 李毅. 基于广义Gabor变换的最优LOFDM系统的脉冲成形[J]. 电子与信息学报, 2006, 28(7): 1274-1278.
引用本文: 简伟, 沈越泓, 李毅. 基于广义Gabor变换的最优LOFDM系统的脉冲成形[J]. 电子与信息学报, 2006, 28(7): 1274-1278.
Jian Wei, Shen Yue-hong, Li Yi. Pulse-Shaping Based on Generalized Gabor Transform for Optimal LOFDM System[J]. Journal of Electronics & Information Technology, 2006, 28(7): 1274-1278.
Citation: Jian Wei, Shen Yue-hong, Li Yi. Pulse-Shaping Based on Generalized Gabor Transform for Optimal LOFDM System[J]. Journal of Electronics & Information Technology, 2006, 28(7): 1274-1278.

基于广义Gabor变换的最优LOFDM系统的脉冲成形

Pulse-Shaping Based on Generalized Gabor Transform for Optimal LOFDM System

  • 摘要: LOFDM(Lattice Orthogonal Frequency Division Multiplexing )是时频弥散信道上的一种高速数据传输技术。但当LOFDM系统的脉冲成形滤波器不具有最优的时频局域化特性时,必将引入严重的ISI和/或ICI。因此脉冲成形滤波器的设计是最优LOFDM系统设计的重要组成部分。Strohmer和Beav(2001,2003)给出了一种LOFDM脉冲成形滤波器的设计方法,但是计算量较大。为此,该文提出了一种广义Gabor变换,通过构造广义紧致Gabor原子来完成最佳LOFDM脉冲成形滤波器的设计的数值实现。理论分析和仿真试验都证明该方法比Strohmer和Beaver给出的方法更简单有效。
  • Strohmer T, Beaver S. Optimal OFDM system design through optimal sphere coverings. Proc. IEEE Int. Conf. Acoustic, Speech, and Signal Processing 2001, Salt Lake city, USA, 2001, 4: 23732376. .[2]Strohmer T, Beaver S. Optimal OFDM design for time.frequency dispersive channels. IEEE Trans. on Commun., 2003, 51(7): 11111122..[3]Bolcskei H. Efficient design of pulse shaping filters for OFDM systems. SPIE Proc. 1999, Denver USA, July 1999, Vol.3813: 625636. .[4]Bolcskei H. Orthogonal frequency division multiplexing based on offset QAM, in Advances in Gabor Analysis, Feichtinger H G, Strohmer T. Boston: Birkhauser, 2002, Ch12.[5]Bolcskei H, Duhamel P, Hleiss R. Design of pulse shaping OFDM/OQAM systems for high data-rate transmission over wireless channels. IEEE International Conference on Communications乫99, Vancouver, Canada, July 1999, vol.1: 559564. .[6]Feichtinger H G, Strobmer T. Gabor Analysis and Algorithms. Boston: Birkhauser, 1998丗Ch1, Ch 8.[7]Qiu Sigang. The undersampled discrete Gabor transform. IEEE Trans. on Signal Processing, 1998, 46(5) : 12211228. .[8].... 旕暯.怣崋暘愅梌.棟. 杒嫗丗崙杊岺.弌斉幮丆1998, 戞2, 4復.[9]墹岹鈀. 旕暯.悘婘怣崋暘愅梌.棟. 杒嫗丗崙杊岺.弌斉幮丆1999, 戞1, 4復.[10]Janssen A J E M, Strohmer T. Characterization and computation of canonical tight windows for Gabor frames[J].J. Fourier. Anal. Appl.2002, 8(1):1-[11]Qiu sigang, Feichtinger H G. Discrete Gabor structures and optical representations[J].IEEE Trans. on Signal Processing.1995, 43(10):2258-
  • 加载中
计量
  • 文章访问数:  2291
  • HTML全文浏览量:  94
  • PDF下载量:  1044
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-11-15
  • 修回日期:  2005-03-28
  • 刊出日期:  2006-07-19

目录

    /

    返回文章
    返回