高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向全息MIMO 6G通信的电磁信道建模理论与方法

黄崇文 季然 魏丽 宫铁瑞 陈晓明 沙威 杨军 张朝阳 YuenChau

黄崇文, 季然, 魏丽, 宫铁瑞, 陈晓明, 沙威, 杨军, 张朝阳, YuenChau. 面向全息MIMO 6G通信的电磁信道建模理论与方法[J]. 电子与信息学报, 2024, 46(5): 1940-1950. doi: 10.11999/JEIT231219
引用本文: 黄崇文, 季然, 魏丽, 宫铁瑞, 陈晓明, 沙威, 杨军, 张朝阳, YuenChau. 面向全息MIMO 6G通信的电磁信道建模理论与方法[J]. 电子与信息学报, 2024, 46(5): 1940-1950. doi: 10.11999/JEIT231219
HUANG Chongwen, JI Ran, WEI Li, GONG Tierui, CHEN Xiaoming, SHA Wei, YANG Jun, ZHANG Zhaoyang, Yuen Chau. Electromagnetic Channel Modeling Theory and Approaches for Holographic MIMO Wireless Communications[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1940-1950. doi: 10.11999/JEIT231219
Citation: HUANG Chongwen, JI Ran, WEI Li, GONG Tierui, CHEN Xiaoming, SHA Wei, YANG Jun, ZHANG Zhaoyang, Yuen Chau. Electromagnetic Channel Modeling Theory and Approaches for Holographic MIMO Wireless Communications[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1940-1950. doi: 10.11999/JEIT231219

面向全息MIMO 6G通信的电磁信道建模理论与方法

doi: 10.11999/JEIT231219
基金项目: 国家重点研发计划(2021YFA1000500, 2023YFB2904800),国家自然科学基金(62331023, 62101492, 62394292, U20A20158),浙江省自然科学基金(LR22F010002),浙江省科技计划项目(2024C01033),浙江大学全球合作基金(本基金无项目编号)
详细信息
    作者简介:

    黄崇文:男,博士,研究员,研究方向为智能超表面辅助的通感一体化,无线AI,电磁信号处理理论与方法

    季然:男,硕士生,研究方向为电磁信息论和全息MIMO

    魏丽:女,博士,研究方向为信道建模,信道估计,电磁信息论等

    宫铁瑞:男,博士,Research Fellow,研究方向为全息MIMO,电磁信息论等

    陈晓明:男,博士,教授,研究方向为5G/6G多天线技术、5G/B5G空口测试、电波混响室、天线设计及测量方法、电磁信息论等

    沙威:男,博士,教授,研究方向为计算及应用电磁学,非线性、量子电磁学,电磁信息论,多物理场分析与建模等

    杨军:男,博士,高级工程师,研究方向为计算电磁学、阵列理论、MIMO技术等

    张朝阳:男,博士,教授,研究方向为新一代无线通信与智能网络、智能协同感知、信息论与计算理论交叉前沿等

    YuenChau:男,博士,副教授,研究方向为RIS/HMIMO赋能6G通信,物联网、大数据等

  • 中图分类号: TN929.5

Electromagnetic Channel Modeling Theory and Approaches for Holographic MIMO Wireless Communications

Funds: The National Key R&D Program (2021YFA1000500, 2023YFB2904800), The National Natural Science Foundation of China (62331023, 62101492, 62394292, U20A20158), Zhejiang Provincial Natural Science Foundation (LR22F010002), Zhejiang Provincial Science and Technology Plan Project (2024C01033), Zhejiang University Global Cooperation Fund
  • 摘要: 全息多输入多输出(HMIMO)是6G通信中的新兴技术,相应阵列由固定物理孔径下的密布天线单元组成。全息MIMO是电磁约束下Massive MIMO天线技术的拓展。全息MIMO系统在有效提升无线通信性能方面具有极大的潜力。比如,可用最小的功率损耗实现尽可能大的连续孔径,灵活控制目标方向的电磁波传输等。但是,由于全息MIMO系统包含大量的紧密分布的天线单元,且单元之间的距离小于半波长,因而造成严重的电磁耦合作用。这些耦合使传统的独立同分布的信道假设失效。因此,如何设计一个有效且贴近实际的信道建模成为当前全息MIMO研究中最具挑战性的问题之一。针对该挑战,该文研究了基于电磁场理论的4种信道建模方式,它们都能很好描述全息MIMO系统中的电磁波传输特征。第1种是基于平面格林函数的精确信道建模方式,该方式将自由空间中点对点的格林函数扩展到平面之间积分形式的格林函数,通过积分计算来构造两个全息MIMO平面之间的通信信道,但该方法的复杂度较高。第2, 3种方法则分别采用了平面波展开和球面波展开来近似全息MIMO的通信信道,这两种方案的复杂度更低。其中,基于平面波展开的信道建模形式相对简单,更适用于远场,但是会低估单元强耦合时的最大系统容量;基于球面波展开的信道建模能更好捕捉电磁波信道几何特征,但其复杂度较高。最后介绍基于随机格林函数的信道建模方法,主要描述富散射环境或瑞利信道中电磁波的随机特性。
  • 图  1  发送端和接收端全息MIMO系统的电磁波传输区域划分

    图  2  发送端和接收端的平面波模型与球面波模型

    图  3  发送端和接收端全息MIMO的空间域天线分布和对应的波数域采样点

    图  4  不同接收间距$ {{\varDelta }} $信道相关矩阵特征值

    图  5  信道建模相关性验证

    图  6  傅立叶平面波建模信道容量对比天线间隔

    图  7  三极化全息MIMO、双极化全息MIMO和传统单极化全息MIMO系统的信道容量对比

  • [1] HUANG Chongwen, HU Sha, ALEXANDROPOULOS G C, et al. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[J]. IEEE Wireless Communications, 2020, 27(5): 118–125. doi: 10.1109/MWC.001.1900534.
    [2] MARZETTA T L. Spatially-stationary propagating random field model for massive MIMO small-scale fading[C]. 2018 IEEE International Symposium on Information Theory, Vail, USA, 2018: 391–395. doi: 10.1109/ISIT.2018.8437634.
    [3] PIZZO A, SANGUINETTI L, and MARZETTA T L. Spatial characterization of electromagnetic random channels[J]. IEEE Open Journal of the Communications Society, 2022, 3: 847–866. doi: 10.1109/OJCOMS.2022.3171409.
    [4] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609.
    [5] WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Channel estimation for RIS-empowered multi-user MISO wireless communications[J]. IEEE Transactions on Communications, 2021, 69(6): 4144–4157. doi: 10.1109/TCOMM.2021.3063236.
    [6] STRINATI E C, ALEXANDROPOULOS G C, WYMEERSCH H, et al. Reconfigurable, intelligent, and sustainable wireless environments for 6G smart connectivity[J]. IEEE Communications Magazine, 2021, 59(10): 99–105. doi: 10.1109/MCOM.001.2100070.
    [7] WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Multi-user holographic MIMO surfaces: Channel modeling and spectral efficiency analysis[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 1112–1124. doi: 10.1109/JSTSP.2022.3176140.
    [8] WILLIAMS R J, DE CARVALHO E, and MARZETTA T L. A communication model for large intelligent surfaces[C]. 2020 IEEE International Conference on Communications Workshops, Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICCWorkshops49005.2020.9145091.
    [9] BASHARAT S, HASSAN S A, PERVAIZ H, et al. Reconfigurable intelligent surfaces: Potentials, applications, and challenges for 6G wireless networks[J]. IEEE Wireless Communications, 2021, 28(6): 184–191. doi: 10.1109/MWC.011.2100016.
    [10] NIE Shuai and AKYILDIZ I F. Codebook design for dual-polarized ultra-massive MIMO communications at millimeter wave and terahertz bands[C]. 2021 IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, 2021: 8072–8076. doi: 10.1109/ICASSP39728.2021.9413660.
    [11] DE SENA A S, NARDELLI P H J, DA COSTA D B, et al. Dual-polarized IRSs in uplink MIMO-NOMA networks: An interference mitigation approach[J]. IEEE Wireless Communications Letters, 2021, 10(10): 2284–2288. doi: 10.1109/LWC.2021.3099867.
    [12] ZAFARI G, KOCA M, and SARI H. Dual-polarized spatial modulation over correlated fading channels[J]. IEEE Transactions on Communications, 2017, 65(3): 1336–1352. doi: 10.1109/TCOMM.2016.2643664.
    [13] HAN Yu, LI Xiao, TANG Wankai, et al. Dual-polarized RIS-assisted mobile communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 591–606. doi: 10.1109/TWC.2021.3098521.
    [14] FRANCESCHETTI M. Wave Theory of Information[M]. Cambridge, UK: Cambridge University Press, 2017. doi: 10.1017/9781139136334.
    [15] YUAN S S A, HE Zi, CHEN Xiaoming, et al. Electromagnetic effective degree of freedom of an MIMO system in free space[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(3): 446–450. doi: 10.1109/LAWP.2021.3135018.
    [16] MIKKI S M and ANTAR Y M M. A theory of antenna electromagnetic near field — part II[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(12): 4706–4724. doi: 10.1109/TAP.2011.2165500.
    [17] ARNOLDUS H F. Representation of the near-field, middle-field, and far-field electromagnetic green’s functions in reciprocal space[J]. Journal of the Optical Society of America B, 2001, 18(4): 547–555. doi: 10.1364/JOSAB.18.000547.
    [18] DE ROSNY J, LEROSEY G, and FINK M. Theory of electromagnetic time-reversal mirrors[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(10): 3139–3149. doi: 10.1109/TAP.2010.2052567.
    [19] WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Tri-polarized holographic MIMO surface in near-field: Channel modeling and precoding design[EB/OL]. https://arxiv.org/abs/2211.03479, 2022.
    [20] OCHELTREE K B and FRIZZEL L A. Sound field calculation for rectangular sources[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1989, 36(2): 242–248. doi: 10.1109/58.19157.
    [21] SETÄLÄ T, KAIVOLA M, and FRIBERG A T. Decomposition of the point-dipole field into homogeneous and evanescent parts[J]. Physical Review E, 1999, 59(1): 1200–1206. doi: 10.1103/PhysRevE.59.1200.
    [22] PIZZO A, SANGUINETTI L, and MARZETTA T L. Fourier plane-wave series expansion for holographic MIMO communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 6890–6905. doi: 10.1109/TWC.2022.3152965.
    [23] PIZZO A, MARZETTA T L, and SANGUINETTI L. Spatially-stationary model for holographic MIMO small-scale fading[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(9): 1964–1979. doi: 10.1109/JSAC.2020.3000877.
    [24] JIANG J S and INGRAM M A. Spherical-wave model for short-range MIMO[J]. IEEE Transactions on Communications, 2005, 53(9): 1534–1541. doi: 10.1109/TCOMM.2005.852842.
    [25] DOVELOS K, ASSIMONIS S D, QUOC NGO H, et al. Intelligent reflecting surfaces at terahertz bands: Channel modeling and analysis[C]. 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, Canada, 2021: 1–6. doi: 10.1109/ICCWorkshops50388.2021.9473890.
    [26] BALANIS C A. Advanced Engineering Electromagnetics[M]. 2nd ed. Hoboken, USA: John Wiley & Sons, 2012.
    [27] LIN Shen, LUO Sangrui, MA Shukai, et al. Predicting statistical wave physics in complex enclosures: A stochastic dyadic green’s function approach[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(2): 436–453. doi: 10.1109/TEMC.2023.3234912.
    [28] STEIN J, STÖCKMANN H J, and STOFFREGEN U. Microwave studies of billiard green functions and propagators[J]. Physical Review Letters, 1995, 75(1): 53–56. doi: 10.1103/PhysRevLett.75.53.
  • 加载中
图(7)
计量
  • 文章访问数:  924
  • HTML全文浏览量:  276
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-02
  • 修回日期:  2024-03-18
  • 网络出版日期:  2024-03-19
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回